1
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
2
|
Loeck T, Rugi M, Todesca LM, Kalinowska P, Soret B, Neumann I, Schimmelpfennig S, Najder K, Pethő Z, Farfariello V, Prevarskaya N, Schwab A. The context-dependent role of the Na +/Ca 2+-exchanger (NCX) in pancreatic stellate cell migration. Pflugers Arch 2023; 475:1225-1240. [PMID: 37566113 PMCID: PMC10499968 DOI: 10.1007/s00424-023-02847-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Pancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors. The stimuli of the TME trigger Ca2+ signaling and cellular Na+ loading. The Na+/Ca2+ exchanger (NCX) connects the cellular Ca2+ and Na+ homeostasis. The NCX is an electrogenic transporter, which shuffles 1 Ca2+ against 3 Na+ ions over the plasma membrane in a forward or reverse mode. Here, we studied how the impact of NCX activity on PSC migration is modulated by cues from the TME. NCX expression was revealed with qPCR and Western blot. [Ca2+]i, [Na+]i, and the cell membrane potential were determined with the fluorescent indicators Fura-2, Asante NaTRIUM Green-2, and DiBAC4(3), respectively. PSC migration was quantified with live-cell imaging. To mimic the TME, PSCs were exposed to hypoxia, pressure, acidic pH (pH 6.6), and PDGF. NCX-dependent signaling was determined with Western blot analyses. PSCs express NCX1.3 and NCX1.9. [Ca2+]i, [Na+]i, and the cell membrane potential are 94.4 nmol/l, 7.4 mmol/l, and - 39.8 mV, respectively. Thus, NCX1 usually operates in the forward (Ca2+ export) mode. NCX1 plays a differential role in translating cues from the TME into an altered migratory behavior. When NCX1 is operating in the forward mode, its inhibition accelerates PSC migration. Thus, NCX1-mediated extrusion of Ca2+ contributes to a slow mode of migration of PSCs.
Collapse
Affiliation(s)
- Thorsten Loeck
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Paulina Kalinowska
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Benjamin Soret
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Ilka Neumann
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Sandra Schimmelpfennig
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Valerio Farfariello
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Université de Lille, Inserm, U1003 - PhyCell - Physiologie Cellulaire, F-59000, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Straße 27b, 48149, Münster, Germany.
| |
Collapse
|
3
|
Umemura M, Nakakaji R, Ishikawa Y. Physiological functions of calcium signaling via Orai1 in cancer. J Physiol Sci 2023; 73:21. [PMID: 37759164 DOI: 10.1186/s12576-023-00878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Intracellular calcium (Ca2+) signaling regulates many cellular functions, including cell proliferation and migration, in both normal cells and cancer cells. Store-operated Ca2+ entry (SOCE) is a major mechanism by which Ca2+ is imported from the extracellular space to the intracellular space, especially in nonexcitable cells. Store-operated Ca2+ entry (SOCE) is also a receptor-regulated Ca2+ entry pathway that maintains Ca2+ homeostasis by sensing reduced Ca2+ levels in the endoplasmic reticulum (ER). In general, the activation of G protein-coupled receptors (GPCRs) or immunoreceptors, such as T-cell, B-cell and Fc receptors, results in the production of inositol 1,4,5-trisphosphate (IP3). IP3 binds to IP3 receptors located in the ER membrane. The, IP3 receptors in the ER membrane trigger a rapid and transient release of Ca2+ from the ER store. The resulting depletion of ER Ca2+ concentrations is sensed by the EF-hand motif of stromal interaction molecule (STIM), i.e., calcium sensor, which then translocates to the plasma membrane (PM). STIM interacts with Orai Ca2+ channel subunits (also known as CRACM1) on the PM, leading to Ca2+ influx from the extracellular space to increase intracellular Ca2+ concentrations. The physiological functions of Orai and STIM have been studied mainly with respect to their roles in the immune system. Based on numerous previous studies, Orai channels (Orai1, Orai2 and Orai3 channels) control Ca2+ release-activated Ca2+ (CRAC) currents and contribute to SOCE currents in other types of cells, including various cancer cells. There are many reports that Orai1 is involved in cell proliferation, migration, metastasis, apoptosis and epithelial-mesenchymal transition (EMT) in various cancers. We previously found that Orai1 plays important roles in cell apoptosis and migration in melanoma. Recently, we reported novel evidence of Orai1 in human oral squamous cell carcinoma (OSCC) cells and human cardiac fibroblasts (HCFs). In this review, we present multiple physiological functions of Orai1 in various cancer cells and cardiac fibroblasts, including our findings.
Collapse
Affiliation(s)
- Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
4
|
Chang M, Chen W, Xia R, Peng Y, Niu P, Fan H. Pancreatic Stellate Cells and the Targeted Therapeutic Strategies in Chronic Pancreatitis. Molecules 2023; 28:5586. [PMID: 37513458 PMCID: PMC10383437 DOI: 10.3390/molecules28145586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic pancreatitis (CP) is a disease characterized by inflammatory recurrence that accompanies the development of pancreatic fibrosis. As the mystery of CP pathogenesis is gradually revealed, accumulating evidence suggests that the activation of pancreatic stellate cells (PSCs) and the appearance of a myofibroblast-like phenotype are the key gatekeepers in the development of CP. Targeting PSCs to prevent their activation and conversion to a myofibroblast-like phenotype, as well as increasing antioxidant capacity to counteract ongoing oxidative stress, are effective strategies for preventing or treating CP. Therefore, we reviewed the crosstalk between CP and pancreatic fibrosis, summarized the activation mechanisms of PSCs, and investigated potential CP therapeutic strategies targeting PSCs, including, but not limited to, anti-fibrosis therapy, antioxidant therapy, and gene therapy. Meanwhile, the above therapeutic strategies are selected in order to update the available phytopharmaceuticals as novel complementary or alternative approaches for the prevention and treatment of CP to clarify their potential mechanisms of action and their relevant molecular targets, aiming to provide the most comprehensive therapeutic treatment direction for CP and to bring new hope to CP patients.
Collapse
Affiliation(s)
- Man Chang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjuan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruting Xia
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yangyue Peng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pandi Niu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
6
|
Acid Adaptation Promotes TRPC1 Plasma Membrane Localization Leading to Pancreatic Ductal Adenocarcinoma Cell Proliferation and Migration through Ca 2+ Entry and Interaction with PI3K/CaM. Cancers (Basel) 2022; 14:cancers14194946. [PMID: 36230869 PMCID: PMC9563726 DOI: 10.3390/cancers14194946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally, with a 5-year overall survival of less than 10%. The development and progression of PDAC are linked to its fluctuating acidic tumor microenvironment. Ion channels act as important sensors of this acidic tumor microenvironment. They transduce extracellular signals and regulate signaling pathways involved in all hallmarks of cancer. In this study, we evaluated the interplay between a pH-sensitive ion channel, the calcium (Ca2+) channel transient receptor potential C1 (TRPC1), and three different stages of the tumor microenvironment, normal pH, acid adaptation, and acid recovery, and its impact on PDAC cell migration, proliferation, and cell cycle progression. In acid adaptation and recovery conditions, TRPC1 localizes to the plasma membrane, where it interacts with PI3K and calmodulin, and permits Ca2+ entry, which results in downstream signaling, leading to proliferation and migration. Thus, TRPC1 exerts a more aggressive role after adaptation to the acidic tumor microenvironment. Abstract Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with a low overall survival rate of less than 10% and limited therapeutic options. Fluctuations in tumor microenvironment pH are a hallmark of PDAC development and progression. Many ion channels are bona fide cellular sensors of changes in pH. Yet, the interplay between the acidic tumor microenvironment and ion channel regulation in PDAC is poorly understood. In this study, we show that acid adaption increases PANC-1 cell migration but attenuates proliferation and spheroid growth, which are restored upon recovery. Moreover, acid adaptation and recovery conditions favor the plasma membrane localization of the pH-sensitive calcium (Ca2+) channel transient receptor potential C1 (TRPC1), TRPC1-mediated Ca2+ influx, channel interaction with the PI3K p85α subunit and calmodulin (CaM), and AKT and ERK1/2 activation. Knockdown (KD) of TRPC1 suppresses cell migration, proliferation, and spheroid growth, notably in acid-recovered cells. KD of TRPC1 causes the accumulation of cells in G0/G1 and G2/M phases, along with reduced expression of CDK6, −2, and −1, and cyclin A, and increased expression of p21CIP1. TRPC1 silencing decreases the basal Ca2+ influx in acid-adapted and -recovered cells, but not in normal pH conditions, and Ca2+ chelation reduces cell migration and proliferation solely in acid adaptation and recovery conditions. In conclusion, acid adaptation and recovery reinforce the involvement of TRPC1 in migration, proliferation, and cell cycle progression by permitting Ca2+ entry and forming a complex with the PI3K p85α subunit and CaM.
Collapse
|
7
|
The TRPC1 Channel Forms a PI3K/CaM Complex and Regulates Pancreatic Ductal Adenocarcinoma Cell Proliferation in a Ca2+-Independent Manner. Int J Mol Sci 2022; 23:ijms23147923. [PMID: 35887266 PMCID: PMC9323718 DOI: 10.3390/ijms23147923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of the transient receptor canonical ion channel (TRPC1) has been found in several cancer types, yet the underlying molecular mechanisms through which TRPC1 impacts pancreatic ductal adenocarcinoma (PDAC) cell proliferation are incompletely understood. Here, we found that TRPC1 is upregulated in human PDAC tissue compared to adjacent pancreatic tissue and this higher expression correlates with low overall survival. TRPC1 is, as well, upregulated in the aggressive PDAC cell line PANC-1, compared to a duct-like cell line, and its knockdown (KD) reduced cell proliferation along with PANC-1 3D spheroid growth by arresting cells in the G1/S phase whilst decreasing cyclin A, CDK2, CDK6, and increasing p21CIP1 expression. In addition, the KD of TRPC1 neither affected Ca2+ influx nor store-operated Ca2+ entry (SOCE) and reduced cell proliferation independently of extracellular calcium. Interestingly, TRPC1 interacted with the PI3K-p85α subunit and calmodulin (CaM); both the CaM protein level and AKT phosphorylation were reduced upon TRPC1 KD. In conclusion, our results show that TRPC1 regulates PDAC cell proliferation and cell cycle progression by interacting with PI3K-p85α and CaM through a Ca2+-independent pathway.
Collapse
|
8
|
Radoslavova S, Fels B, Pethö Z, Gruner M, Ruck T, Meuth SG, Folcher A, Prevarskaya N, Schwab A, Ouadid-Ahidouch H. TRPC1 channels regulate the activation of pancreatic stellate cells through ERK1/2 and SMAD2 pathways and perpetuate their pressure-mediated activation. Cell Calcium 2022; 106:102621. [PMID: 35905654 DOI: 10.1016/j.ceca.2022.102621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic stellate cell (PSC) activation is a major event occurring during pancreatic ductal adenocarcinoma (PDAC) development. Up to now mechanisms underlying their activation by mechanical cues such as the elevated tissue pressure in PDAC remain poorly understood. Here we investigate the role of one potential mechano-transducer, TRPC1 ion channel, in PSC activation. Using pre-activated human siTRPC1 and murine TRPC1-KO PSCs, we show that TRPC1 promotes αSMA (α-smooth muscle actin) expression, the main activation marker, in cooperation with the phosphorylated SMAD2, under normal and elevated pressure. Functional studies following TRPC1 silencing demonstrate the dual role of TRPC1 in the modulation of PSC proliferation and IL-6 secretion through the activation of ERK1/2 and SMAD2 pathways. Moreover, pressurization changes the mechanical behavior of PSCs by increasing their cellular stiffness and emitted traction forces in a TRPC1-dependent manner. In summary, these results point to a role of TRPC1 channels in sensing and transducing the characteristic mechanical properties of the PDAC microenvironment in PSCs.
Collapse
Affiliation(s)
- Silviya Radoslavova
- Laboratory of Cellular and Molecular Physiology, UR-UPJV 4667, University of Picardie Jules Verne, 80039 Amiens, France; University of Lille, Inserm U1003 - PHYCEL - Cellular Physiology, F-59000 Lille, France
| | - Benedikt Fels
- Institute of Physiology, University Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Zoltan Pethö
- Institute of Physiology II, University Münster, Münster, Germany
| | - Matthias Gruner
- Institute of Physiology II, University Münster, Münster, Germany
| | - Tobias Ruck
- Klinik für Neurologie, Medical Faculty, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Klinik für Neurologie, Medical Faculty, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Antoine Folcher
- University of Lille, Inserm U1003 - PHYCEL - Cellular Physiology, F-59000 Lille, France
| | - Natalia Prevarskaya
- University of Lille, Inserm U1003 - PHYCEL - Cellular Physiology, F-59000 Lille, France.
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, Münster, Germany.
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-UPJV 4667, University of Picardie Jules Verne, 80039 Amiens, France.
| |
Collapse
|
9
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
10
|
Chamlali M, Kouba S, Rodat-Despoix L, Todesca LM, Pethö Z, Schwab A, Ouadid-Ahidouch H. Orai3 Calcium Channel Regulates Breast Cancer Cell Migration through Calcium-Dependent and -Independent Mechanisms. Cells 2021; 10:cells10123487. [PMID: 34943998 PMCID: PMC8700618 DOI: 10.3390/cells10123487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Orai3 calcium (Ca2+) channels are implicated in multiple breast cancer processes, such as proliferation and survival as well as resistance to chemotherapy. However, their involvement in the breast cancer cell migration processes remains vague. In the present study, we exploited MDA-MB-231 and MDA-MB-231 BrM2 basal-like estrogen receptor-negative (ER-) cell lines to assess the direct role of Orai3 in cell migration. We showed that Orai3 regulates MDA-MB-231 and MDA-MB-231 BrM2 cell migration in two distinct ways. First, we showed that Orai3 remodels cell adhesive capacities by modulating the intracellular Ca2+ concentration. Orai3 silencing (siOrai3) decreased calpain activity, cell adhesion and migration in a Ca2+-dependent manner. In addition, Orai3 interacts with focal adhesion kinase (FAK) and regulates the actin cytoskeleton, in a Ca2+-independent way. Thus, siOrai3 modulates cell morphology by altering F-actin polymerization via a loss of interaction between Orai3 and FAK. To summarize, we demonstrated that Orai3 regulates cell migration through a Ca2+-dependent modulation of calpain activity and, in a Ca2+-independent manner, the actin cytoskeleton architecture via FAK.
Collapse
Affiliation(s)
- Mohamed Chamlali
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
| | - Sana Kouba
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
| | - Lise Rodat-Despoix
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany; (L.M.T.); (Z.P.); (A.S.)
| | - Zoltán Pethö
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany; (L.M.T.); (Z.P.); (A.S.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany; (L.M.T.); (Z.P.); (A.S.)
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France; (M.C.); (S.K.); (L.R.-D.)
- Correspondence: ; Tel.: +33-322827646
| |
Collapse
|