1
|
Guangzhao L, Xin W, Miaoqing W, Wenjuan M, Ranyi L, Zhizhong P, Rongxin Z, Gong C. IDO1 inhibitor enhances the effectiveness of PD-1 blockade in microsatellite stable colorectal cancer by promoting macrophage pro-inflammatory phenotype polarization. Cancer Immunol Immunother 2025; 74:71. [PMID: 39751692 PMCID: PMC11699167 DOI: 10.1007/s00262-024-03925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets. In vivo experiments demonstrated that the combination of IDO1 inhibition and PD-1 blockade significantly reduced tumor growth and increased immune cell infiltration, particularly pro-inflammatory macrophages and CD8+ T cells. IDO1 knockdown in CRC cell lines impaired tolerance to interferon-γ and increased apoptosis in vitro, which were rescued by the application of kynurenine, the end product of IDO1. IDO1 knockdown in MSS CRC enhanced the effectiveness of PD-1 blockade therapy in vivo. IDO1 knockdown cancer cells promoted pro-inflammatory macrophage polarization and enhanced phagocytic activity in vitro, associated with the upregulation of JAK2-STAT3-IL6 signaling pathway. These findings highlight the role of IDO1 in modulating the tumor immune microenvironment in MSS CRC and suggest that combining PD-1 blockade with IDO1 inhibition could enhance therapeutic efficacy by promoting macrophage pro-inflammatory polarization and infiltration through the JAK2-STAT3-IL6 pathway.
Collapse
Affiliation(s)
- Lv Guangzhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wang Xin
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wu Miaoqing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ma Wenjuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research Center for Cancer Guangzhou, Guangzhou, Guangdong, China
| | - Liu Ranyi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Pan Zhizhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Zhang Rongxin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Chen Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
3
|
Gu Y, Li C, Yan Y, Ming J, Li Y, Chao X, Wang T. Comprehensive Analysis and Verification of the Prognostic Significance of Cuproptosis-Related Genes in Colon Adenocarcinoma. Int J Mol Sci 2024; 25:11830. [PMID: 39519383 PMCID: PMC11546850 DOI: 10.3390/ijms252111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Colon adenocarcinoma (COAD) is a frequently occurring and lethal cancer. Cuproptosis is an emerging type of cell death, and the underlying pathways involved in this process in COAD remain poorly understood. Transcriptomic and clinical data for COAD patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We investigated alterations in DNA and chromatin of cuproptosis-related genes (CRGs) in COAD. In order to identify predictive differentially expressed genes (DEGs) and various molecular subtypes, we used consensus cluster analysis. Through univariate, multivariate, and Lasso Cox regression analyses, four CRGs were identified. A risk prognostic model for cuproptosis characteristics was constructed based on four CRGs. This study also examined the association between the risk score and the tumor microenvironment (TME), the immune landscape, and drug sensitivity. We distinguished two unique molecular subtypes using consensus clustering analysis. We discovered that the clinical characteristics, prognosis, and TME cell infiltration characteristics of patients with multilayer CRG subtypes were all connected. The internal and external evaluations of the predicted accuracy of the prognostic model built using data derived from a cuproptosis risk score were completed at the same time. A nomogram and a clinical pathological analysis make it more useful in the field of medicine. A significant rise in immunosuppressive cells was observed in the high cuproptosis risk score group, with a correlation identified between the cuproptosis risk score and immune cell infiltration. Despite generally poor prognoses, the patients with a high cuproptosis risk but low tumor mutation burden (TMB), cancer stem cell (CSC) index, or microsatellite instability (MSI) may still benefit from immunotherapy. Furthermore, the cuproptosis risk score positively correlated with immune checkpoint gene expression. Analyzing the potential sensitivity to medications could aid in the development of clinical chemotherapy regimens and decision-making. CRGs are the subject of our in-depth study, which exposed an array of regulatory mechanisms impacting TME. In addition, we performed additional data mining into clinical features, prognosis effectiveness, and possible treatment medications. COAD's molecular pathways will be better understood, leading to more precise treatment options.
Collapse
Affiliation(s)
- Yixiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Chengze Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Yinan Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Jingmei Ming
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 100029, China; (J.M.); (Y.L.)
| | - Yuanhua Li
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 100029, China; (J.M.); (Y.L.)
| | - Xiang Chao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
4
|
Löwenmark T, Köhn L, Kellgren T, Rosenbaum W, Bronnec V, Löfgren-Burström A, Zingmark C, Larsson P, Dahlberg M, Schroeder BO, Wai SN, Ljuslinder I, Edin S, Palmqvist R. Parvimonas micra forms a distinct bacterial network with oral pathobionts in colorectal cancer patients. J Transl Med 2024; 22:947. [PMID: 39420333 PMCID: PMC11487773 DOI: 10.1186/s12967-024-05720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mounting evidence suggests a significant role of the gut microbiota in the development and progression of colorectal cancer (CRC). In particular, an over-representation of oral pathogens has been linked to CRC. The aim of this study was to further investigate the faecal microbial landscape of CRC patients, with a focus on the oral pathogens Parvimonas micra and Fusobacterium nucleatum. METHODS In this study, 16S rRNA sequencing was conducted using faecal samples from CRC patients (n = 275) and controls without pathological findings (n = 95). RESULTS We discovered a significant difference in microbial composition depending on tumour location and microsatellite instability (MSI) status, with P. micra, F. nucleatum, and Peptostreptococcus stomatis found to be more abundant in patients with MSI tumours. Moreover, P. micra and F. nucleatum were associated with a cluster of CRC-related bacteria including Bacteroides fragilis as well as with other oral pathogens such as P. stomatis and various Porphyromonas species. This cluster was distinctly different in the control group, suggesting its potential linkage with CRC. CONCLUSIONS Our results suggest a similar distribution of several CRC-associated bacteria within CRC patients, underscoring the importance of considering the concomitant presence of bacterial species in studies investigating the mechanisms of CRC development and progression.
Collapse
Affiliation(s)
- Thyra Löwenmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Linda Köhn
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Therese Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - William Rosenbaum
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Vicky Bronnec
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Michael Dahlberg
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Silva V, Matos C. Recent updates in the therapeutic uses of Pembrolizumab: a brief narrative review. Clin Transl Oncol 2024; 26:2431-2443. [PMID: 38658461 DOI: 10.1007/s12094-024-03491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Treatment of cancer has been improved with the discovery of biological drugs that act as immune checkpoint inhibitors. In 2017, FDA designated pembrolizumab, an immune checkpoint inhibitor employed in immunotherapy, as the first tissue-agnostic cancer treatment. OBJECTIVES To review pembrolizumab's use in oncology, gather and examine the latest discoveries regarding the effectiveness of pembrolizumab in cancer treatment. METHODOLOGY A literature review was conducted through PubMed(Medline) from January 2015 to December 2023 using "pembrolizumab", "cancer" and "treatment" as search terms. RESULTS Pembrolizumab demonstrated effectiveness as primary treatment for metastatic nonsmall cell lung cancer, unresectable esophageal cancer, head and neck squamous cell carcinoma and alternative treatment for notable triple-negative breast cancer, biliary, colorectal, endometrial, renal cell, cervical carcinoma, and high microsatellite instability or mismatch repair deficiencies tumors. Pediatric applications include treatment for refractory Hodgkin lymphoma. CONCLUSION Evolving research on pembrolizumab allows a deeper clinical understanding, despite challenges as variable patient responses. Pembrolizumab has emerged as a pivotal breakthrough in cancer treatment, improving patient outcomes and safety.
Collapse
Affiliation(s)
- Vítor Silva
- Centro Hospitalar e Universitário de Coimbra, EPE, 3004-561, Coimbra, Portugal
| | - Cristiano Matos
- QLV Research Consulting, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School Pharmacy, 3046-854, Coimbra, Portugal.
| |
Collapse
|
6
|
Mihaila RI, Gheorghe AS, Zob DL, Stanculeanu DL. The Importance of Predictive Biomarkers and Their Correlation with the Response to Immunotherapy in Solid Tumors-Impact on Clinical Practice. Biomedicines 2024; 12:2146. [PMID: 39335659 PMCID: PMC11429372 DOI: 10.3390/biomedicines12092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Immunotherapy has changed the therapeutic approach for various solid tumors, especially lung tumors, malignant melanoma, renal and urogenital carcinomas, demonstrating significant antitumor activity, with tolerable safety profiles and durable responses. However, not all patients benefit from immunotherapy, underscoring the need for predictive biomarkers that can identify those most likely to respond to treatment. Methods: The integration of predictive biomarkers into clinical practice for immune checkpoint inhibitors (ICI) holds great promise for personalized cancer treatment. Programmed death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), microsatellite instability (MSI), gene expression profiles and circulating tumor DNA (ctDNA) have shown potential in predicting ICI responses across various cancers. Results: Challenges such as standardization, validation, regulatory approval, and cost-effectiveness must be addressed to realize their full potential. Predictive biomarkers are crucial for optimizing the clinical use of ICIs in cancer therapy. Conclusions: While significant progress has been made, further research and collaboration among clinicians, researchers, and regulatory institutes are essential to overcome the challenges of clinical implementation. However, little is known about the relationship between local and systemic immune responses and the correlation with response to oncological therapies and patient survival.
Collapse
Affiliation(s)
- Raluca Ioana Mihaila
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Adelina Silvana Gheorghe
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Luminita Zob
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Dana Lucia Stanculeanu
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Moreau M, Alouani E, Flecchia C, Falcoz A, Gallois C, Auclin E, André T, Cohen R, Hollebecque A, Turpin A, Pernot S, Masson T, Di Fiore F, Dutherge M, Mazard T, Hautefeuille V, Van Laethem JL, De la Fouchardière C, Perkins G, Ben-Abdelghani M, Sclafani F, Aparicio T, Kim S, Vernerey D, Taieb J, Guimbaud R, Tougeron D. A multicenter study evaluating efficacy of immune checkpoint inhibitors in advanced non-colorectal digestive cancers with microsatellite instability. Eur J Cancer 2024; 202:114033. [PMID: 38537314 DOI: 10.1016/j.ejca.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND One randomized phase III trial comparing chemotherapy (CT) with immune checkpoint inhibitors (ICI) has demonstrated significant efficacy of ICI in deficient DNA mismatch repair system/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer. However, few studies have compared ICI with CT in other advanced dMMR/MSI-H digestive tumors. METHODS In this multicenter study, we included patients with advanced dMMR/MSI-H non-colorectal digestive tumors treated with chemotherapy and/or ICIs. Patients were divided retrospectively into two groups, a CT group and an immunotherapy (IO) group. The primary endpoint was progression-free survival (PFS). A propensity score approach using the inverse probability of treatment weighting (IPTW) method was applied to deal with potential differences between the two groups. RESULTS 133 patients (45.1/27.1/27.8% with gastric/small bowel/other carcinomas) were included. The majority of patients received ICI in 1st (29.1%) or 2nd line (44.4%). The 24-month PFS rates were 7.9% in the CT group and 71.2% in the IO group. Using the IPTW method, IO treatment was associated with better PFS (HR=0.227; 95% CI 0.147-0.351; p < 0.0001). The overall response rate was 26.3% in the CT group versus 60.7% in the IO group (p < 0.001) with prolonged duration of disease control in the IO group (p < 0.001). In multivariable analysis, predictive factors of PFS for patients treated with IO were good performance status, absence of liver metastasis and prior primary tumor resection, whereas no association was found for the site of the primary tumor. CONCLUSIONS In the absence of randomized trials, our study highlights the superior efficacy of ICI compared with standard-of-care therapy in patients with unresectable or metastatic dMMR/MSI-H non-colorectal digestive cancer, regardless of tumor type, with acceptable toxicity.
Collapse
Affiliation(s)
- Mathilde Moreau
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Emily Alouani
- Digestive Oncology Department, Toulouse University Hospital, IUCT Rangueil-Larrey, 31059 Toulouse, France
| | - Clémence Flecchia
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Antoine Falcoz
- Methodological and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France; INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Claire Gallois
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Edouard Auclin
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Thierry André
- Sorbonne University, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC CURAMUS, Centre de Recherche Saint Antoine, Paris, France
| | - Romain Cohen
- Sorbonne University, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC CURAMUS, Centre de Recherche Saint Antoine, Paris, France
| | - Antoine Hollebecque
- Department of Medical Oncology, Gustave Roussy Institute, Villejuif 94805, France
| | - Anthony Turpin
- Medical Oncology Department, CHU Lille, University of Lille, Lille, France
| | - Simon Pernot
- Medical Oncology Department, Bergonié Institute, Bordeaux 33076, France
| | - Thérèse Masson
- Medical Oncology Department, La Rochelle Hospital, La Rochelle 17019, France
| | - Frederic Di Fiore
- Department of Medical Oncology, Rouen University Hospital, Rouen 76000, France
| | - Marie Dutherge
- Department of Medical Oncology, Rouen University Hospital, Rouen 76000, France
| | - Thibault Mazard
- Department of Medical Oncology, IRCM, INSERM, University of Montpellier, ICM, Montpellier, France
| | - Vincent Hautefeuille
- Department of Hepato-Gastroenterology and Digestive Oncology, Amiens University Hospital, Amiens, France
| | - Jean-Luc Van Laethem
- Digestive Oncology Department, Erasme Hospital, The Brussels University Hospital, Anderlecht 1070, Belgium
| | | | - Géraldine Perkins
- Department of Medical Oncology, Rennes University Hospital, Ponchaillou, Rennes 35000, France
| | - Meher Ben-Abdelghani
- Department of Medical Oncology, European Oncology Institute of Strasbourg, Strasbourg 67200, France
| | - Francesco Sclafani
- Digestive Oncology Department, Institut Jules Bordet, The Brussels University Hospital, Anderlecht 1070, Belgium
| | - Thomas Aparicio
- Gastroenterology Department, Saint-Louis Hospital, Paris 75010, France
| | - Stefano Kim
- Department of Medical Oncology, Besançon University Hospital, Besançon 25000, France
| | - Dewi Vernerey
- Methodological and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France; INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Julien Taieb
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Rosine Guimbaud
- Digestive Oncology Department, Toulouse University Hospital, IUCT Rangueil-Larrey, 31059 Toulouse, France
| | - David Tougeron
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers 86000, France.
| |
Collapse
|
8
|
Evrard C, Cortes U, Ndiaye B, Bonnemort J, Martel M, Aguillon R, Tougeron D, Karayan-Tapon L. An Innovative and Accurate Next-Generation Sequencing-Based Microsatellite Instability Detection Method for Colorectal and Endometrial Tumors. J Transl Med 2024; 104:100297. [PMID: 38008183 DOI: 10.1016/j.labinv.2023.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
The detection of microsatellite instability (MSI) and mismatch repair (MMR) deficiency has become mandatory for most tumors in recent years, owing to the development of immune checkpoint inhibitors as a highly effective therapy for MMR deficiency/MSI tumors. The timely and efficient detection of MSI is valuable, and new methods are increasingly being developed. To date, MMR assessment has been performed using immunohistochemistry of the 4 MMR proteins and/or microsatellite stability/MSI using PCR, mostly using the pentaplex panel. The implementation of next-generation sequencing (NGS) for MSI analysis would improve the effectiveness at a lower cost and in less time. This study describes the development of 8 new microsatellites combined with a classification algorithm, termed "Octaplex CaBio-MSID" (for Cancérologie Biologique MSI Detection tool), to assess MSI using NGS. A series of 303 colorectal cancer and 88 endometrial cancer samples were assessed via MSI testing using NGS using the Octaplex CaBio-MSID algorithm. The sensitivity and specificity of Octaplex CaBio-MSID were 98.4% and 98.4% for colorectal cancers, and 89.3% and 100% for endometrial cancers, respectively. This new NGS-based MSI detection method outperforms previously published methods (ie, Idylla [Biocartis], OncoMate MSI Dx [Promega], and Foundation One CDx [Roche Foundation Medicine]). Although highly efficient, Octaplex CaBio-MSID requires validation in a larger independent series of different tumor types.
Collapse
Affiliation(s)
- Camille Evrard
- Université de Poitiers, PRoDiCeT, Poitiers, France; CHU de Poitiers, Service d'Oncologie médicale, Poitiers, France.
| | - Ulrich Cortes
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - Birama Ndiaye
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | | | - Marine Martel
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - Roxanne Aguillon
- CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| | - David Tougeron
- Université de Poitiers, PRoDiCeT, Poitiers, France; CHU de Poitiers, Service d'hépato-Gastro-Entérologie, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, PRoDiCeT, Poitiers, France; CHU de Poitiers, Service de Cancérologie Biologique, Poitiers, France
| |
Collapse
|
9
|
Edin S, Gylling B, Li X, Stenberg Å, Löfgren-Burström A, Zingmark C, van Guelpen B, Ljuslinder I, Ling A, Palmqvist R. Opposing roles by KRAS and BRAF mutation on immune cell infiltration in colorectal cancer - possible implications for immunotherapy. Br J Cancer 2024; 130:143-150. [PMID: 38040818 PMCID: PMC10781968 DOI: 10.1038/s41416-023-02483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The immune response has important clinical value in colorectal cancer (CRC) in both prognosis and response to immunotherapy. This study aims to explore tumour immune cell infiltration in relation to clinically well-established molecular markers of CRC. METHODS Multiplex immunohistochemistry and multispectral imaging was used to evaluate tumour infiltration of cytotoxic T cells (CD8+), Th1 cells (T-bet+), T regulatory cells (FoxP3+), B cells (CD20+), and macrophages (CD68+) in a cohort of 257 CRC patients. RESULTS We found the expected association between higher immune-cell infiltration and microsatellite instability. Also, whereas BRAF-mutated tumours displayed increased immune-cell infiltration compared to BRAF wild-type tumours, the opposite was seen for KRAS-mutated tumours, differences that were most prominent for cytotoxic T cells and Th1 cells. The opposing relationships of BRAF and KRAS mutations with tumour infiltration of cytotoxic T cells was validated in an independent cohort of 608 CRC patients. A positive prognostic importance of cytotoxic T cells was found in wild-type as well as KRAS and BRAF-mutated CRCs in both cohorts. CONCLUSION A combined evaluation of MSI status, KRAS and BRAF mutational status, and immune infiltration (cytotoxic T cells) may provide important insights to prognosis and response to immunotherapy in CRC.
Collapse
Affiliation(s)
- Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Åsa Stenberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Zhang H, Shan W, Yang Z, Zhang Y, Wang M, Gao L, Zeng L, Zhao Q, Liu J. NAT10 mediated mRNA acetylation modification patterns associated with colon cancer progression and microsatellite status. Epigenetics 2023; 18:2188667. [PMID: 36908042 PMCID: PMC10026876 DOI: 10.1080/15592294.2023.2188667] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
N4-acetylcytidine (ac4C) is one type of RNA modification found in eukaryotes. RNA acetylation modifications are gradually expanding in oncology. However, the role of RNA acetylation modifications in colorectal cancer and its association with colorectal cancer microsatellite status remain unclear. Using public databases and in vitro experiments, we verified the expression and biological function of NAT10, as the key RNA acetylation modification enzyme, in colorectal cancer. The results showed that NAT10 was highly expressed in colorectal cancer, and significantly promoted colorectal cancer cell proliferation. NAT10 was also involved in several aspects of cell homoeostasis such as ion transport, calcium-dependent phospholipid binding, and RNA stability. NAT10 expression positively correlated with immune infiltration in colorectal cancer. We further constructed a risk regression model for mRNA acetylation in colorectal cancer using acetylation-related differential genes. We found that tumour immune infiltration, microsatellite instability (MSI) proportion, tumour immune mutation burden, and patient response to immunotherapy were positively correlated with risk scores. For the first time, our study showed that the level of mRNA acetylation modification level is elevated in colorectal cancer and positively correlates with immune infiltration and microsatellite status of patients. Based on our findings, NAT10 may be a new target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Wenqing Shan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Zhenwei Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Liping Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Lingxiu Zeng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zhu Y, Li X, Chen T, Wang J, Zhou Y, Mu X, Du Y, Wang J, Tang J, Liu J. Personalised neoantigen-based therapy in colorectal cancer. Clin Transl Med 2023; 13:e1461. [PMID: 37921274 PMCID: PMC10623652 DOI: 10.1002/ctm2.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) has become one of the most common tumours with high morbidity, mortality and distinctive evolution mechanism. The neoantigens arising from the somatic mutations have become considerable treatment targets in the management of CRC. As cancer-specific aberrant peptides, neoantigens can trigger the robust host immune response and exert anti-tumour effects while minimising the emergence of adverse events commonly associated with alternative therapeutic regimens. In this review, we summarised the mechanism, generation, identification and prognostic significance of neoantigens, as well as therapeutic strategies challenges of neoantigen-based therapy in CRC. The evidence suggests that the establishment of personalised neoantigen-based therapy holds great promise as an effective treatment approach for patients with CRC.
Collapse
Affiliation(s)
- Ya‐Juan Zhu
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiong Li
- Department of GastroenterologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ting‐Ting Chen
- The Second Clinical Medical College of Lanzhou UniversityLanzhouChina
| | - Jia‐Xiang Wang
- Department of Renal Cancer and MelanomaPeking University Cancer Hospital & InstituteBeijingChina
| | - Yi‐Xin Zhou
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiao‐Li Mu
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Du
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jia‐Ling Wang
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jie Tang
- Clinical Trial CenterWest China HospitalSichuan UniversityChengduChina
| | - Ji‐Yan Liu
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Lv M, Guo S, Zhang X, Zou Y, Chen Q, Zang C, Huang S, Hu Y, Wang Y, Wang Q, Zhong J. Attenuated Salmonella-delivered PD-1 siRNA enhances the antitumor effects of EZH2 inhibitors in colorectal cancer. Int Immunopharmacol 2023; 124:110918. [PMID: 37708707 DOI: 10.1016/j.intimp.2023.110918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Immunotherapy has made significant progress in the treatment of malignant tumors. However, strategies to combine immunotherapy with anticancer drugs have attracted great attention due to the low response rate and unique toxicity profile of immunotherapies and the subsequent development of acquired resistance in some initial responders. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex,is highly expressed in a variety of tumors, and targeting EZH2 has become a new strategy for tumor therapy and drug combination. Here,we studied the effect of EZH2 inhibitors on colorectal cancer cells and their combination with immunotherapy. Our results demonstrated that EZH2 inhibitors can not only significantly inhibit the survival of colorectal cancer (CRC) cells and induce apoptosis, effectively inhibit cell invasion and migration, but also cause an increase in the expression of PD-L1 receptors on the cell surface. To determine the effect of EZH2 in combination with immunotherapy, we combine EZH2 inhibitors with PD-1 siRNA delivered by attenuated Salmonella. The vivo experiments have shown that the combination of EZH2 inhibitors and Salmonella-delivered PD-1 siRNA can further inhibit the development of CRC, trigger effective anti-tumor immunity, and improve therapeutic efficacy. Its underlying mechanisms mainly involve synergistic immunomodulation and apoptosis. This study suggests an emerging strategy based on a combination of EZH2 inhibitor and immunotherapy based on PD-1 inhibition.
Collapse
Affiliation(s)
- Mengmeng Lv
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sheng Guo
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China, Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyu Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Zou
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiang Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chongyi Zang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuo Huang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuhan Hu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Qianqing Wang
- Department of Gynecology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China; Department of Gynecology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
13
|
Taïeb J, Bouche O, André T, Le Malicot K, Laurent-Puig P, Bez J, Toullec C, Borg C, Randrian V, Evesque L, Corbinais S, Perrier H, Buecher B, Di Fiore F, Gallois C, Emile JF, Lepage C, Elhajbi F, Tougeron D. Avelumab vs Standard Second-Line Chemotherapy in Patients With Metastatic Colorectal Cancer and Microsatellite Instability: A Randomized Clinical Trial. JAMA Oncol 2023; 9:1356-1363. [PMID: 37535388 PMCID: PMC10401392 DOI: 10.1001/jamaoncol.2023.2761] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023]
Abstract
Importance Only 1 randomized clinical trial has shown the superiority of immune checkpoint inhibitors in patients with deficient mismatch repair and/or microsatellite instability (dMMR/MSI) metastatic colorectal cancer (mCRC) in the first-line setting. Objectives To determine whether avelumab (an anti-programmed cell death ligand 1 antibody) improves progression-free survival (PFS) compared with standard second-line chemotherapy in patients with dMMR/MSI mCRC. Design, Setting, and Participants The SAMCO-PRODIGE 54 trial is a national open-label phase 2 randomized clinical trial that was conducted from April 24, 2018, to April 29, 2021, at 49 French sites. Patients with dMMR/MSI mCRC who experienced progression while receiving standard first-line therapy were included in the analysis. Interventions Patients were randomized to receive standard second-line therapy or avelumab every 2 weeks until progression, unacceptable toxic effects, or patient refusal. Main Outcome and Measures The primary end point was PFS according to RECIST (Response Evaluation Criteria in Solid Tumours), version 1.1, evaluated by investigators in patients with mCRC and confirmed dMMR and MSI status who received at least 1 dose of treatment (modified intention-to-treat [mITT] population). Results A total of 122 patients were enrolled in the mITT population. Median age was 66 (IQR, 56-76) years, 65 patients (53.3%) were women, 100 (82.0%) had a right-sided tumor, and 52 (42.6%) had BRAF V600E-mutated tumors. There was no difference in patients and tumor characteristics between treatment groups. No new safety concerns in either group were detected, with fewer treatment-related adverse events of at least grade 3 in the avelumab group than in the chemotherapy group (20 [31.7%] vs 34 [53.1%]; P = .02). After a median follow-up of 33.3 (95% CI, 28.3-34.8) months, avelumab was superior to chemotherapy with or without targeted agents with respect to PFS (15 [24.6%] vs 5 [8.2%] among patients without progression; P = .03). Rates of PFS rates at 12 months were 31.2% (95% CI, 20.1%-42.9%) and 19.4% (95% CI, 10.6%-30.2%) in the avelumab and control groups, respectively, and 27.4% (95% CI, 16.8%-39.0%) and 9.1% (95% CI, 3.2%-18.8%) at 18 months. Objective response rates were similar in both groups (18 [29.5%] vs 16 [26.2%]; P = .45). Among patients with disease control, 18 (75.7%) in the avelumab group compared with 9 (19.1%) in the control group had ongoing disease control at 18 months. Conclusions The SAMCO-PRODIGE 54 phase 2 randomized clinical trial showed, in patients with dMMR/MSI mCRC, better PFS and disease control duration with avelumab over standard second-line treatment, with a favorable safety profile. Trial Registration ClinicalTrials.gov Identifier: NCT03186326.
Collapse
Affiliation(s)
- Julien Taïeb
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Olivier Bouche
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU) Reims, Reims, France
| | - Thierry André
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Pierre Laurent-Puig
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Jérémie Bez
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Clémence Toullec
- Department of Medical Oncology, Institut du Cancer, Avignon-Provence, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Violaine Randrian
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Ludovic Evesque
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | | | - Hervé Perrier
- Department of Hepato-Gastroenterology, Hôpital Saint-Joseph, Marseille, France
| | - Bruno Buecher
- Department of Oncology, Institut Curie, Paris, France
| | - Frederic Di Fiore
- Hepatogastroenterology Department, CHU Rouen, University of Rouen Normandy, INSERM 1245, Institut de Recherche en Oncologie Group, Normandie University, Rouen, France
| | - Claire Gallois
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Jean Francois Emile
- EA4340, Pathology Department and INSERM, Ambroise Paré Hospital, Boulogne, France
| | - Côme Lepage
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
- Department of Digestive Oncology, University Hospital Dijon, University of Burgundy and Franche Comté, Dijon, France
| | - Farid Elhajbi
- Medical Oncology Department, Oscar Lambret Center, Lille, France
| | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
14
|
Zwart K, van der Baan FH, Cohen R, Aparicio T, de la Fouchardiére C, Lecomte T, Punt CJA, Sefrioui D, Verheijden RJ, Vink GR, Wensink GE, Zaanan A, Koopman M, Tougeron D, Roodhart JML. Prognostic value of Lynch syndrome, BRAF V600E , and RAS mutational status in dMMR/MSI-H metastatic colorectal cancer in a pooled analysis of Dutch and French cohorts. Cancer Med 2023; 12:15841-15853. [PMID: 37326121 PMCID: PMC10469760 DOI: 10.1002/cam4.6223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Current knowledge on prognostic biomarkers (especially BRAFV600E /RAS mutations) in metastatic colorectal cancer (mCRC) is mainly based on mCRC patients with proficient mismatch repair (pMMR) tumors. It is uncertain whether these biomarkers have the same prognostic value in mCRC patients with deficient mismatch repair (dMMR) tumors. METHODS This observational cohort study combined a population-based Dutch cohort (2014-2019) and a large French multicenter cohort (2007-2017). All mCRC patients with a histologically proven dMMR tumor were included. RESULTS In our real-world data cohort of 707 dMMR mCRC patients, 438 patients were treated with first-line palliative systemic chemotherapy. Mean age of first-line treated patients was 61.9 years, 49% were male, and 40% had Lynch syndrome. BRAFV600E mutation was present in 47% of tumors and 30% harbored a RAS mutation. Multivariable regression analysis on OS showed significant hazard rates (HR) for known prognostic factors as age and performance status, however showed no significance for Lynch syndrome (HR: 1.07, 95% CI: 0.66-1.72), BRAFV600E mutational status (HR: 1.02, 95% CI: 0.67-1.54), and RAS mutational status (HR: 1.01, 95% CI: 0.64-1.59), with similar results for PFS. CONCLUSION BRAFV600E and RAS mutational status are not associated with prognosis in dMMR mCRC patients, in contrast to pMMR mCRC patients. Lynch syndrome is also not an independent prognostic factor for survival. These findings underline that prognostic factors of patients with dMMR mCRC are different of those with pMMR, which could be taken into consideration when prognosis is used for clinical decision-making in dMMR mCRC patients and underline the complex heterogeneity of mCRC.
Collapse
Affiliation(s)
- Koen Zwart
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Frederieke H. van der Baan
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Romain Cohen
- Department of Medical Oncology, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUSCentre de recherche Saint Antoine, Hôpital Saint‐Antoine, AP‐HP, and INSERM UMRS 938, Sorbonne UniversitéParisFrance
| | - Thomas Aparicio
- Gastroenterology Department, Saint Louis Hospital, AP‐HPUniversity of ParisParisFrance
- Gastroenterology DepartmentAvicenne HospitalBobignyFrance
| | | | - Thierry Lecomte
- Department of Hepato‐Gastroenterology and Digestive Oncology, Tours University Hospital and INSERM UMR 1069 N2CUniversity of ToursToursFrance
| | - Cornelis J. A. Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - David Sefrioui
- Digestive Oncology Unit, Department of Hepatogastroenterology, Rouen University Hospital, IRON Group and INSERM U1245University of NormandyRouenFrance
| | - Rik J. Verheijden
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Geraldine R. Vink
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Research and DevelopmentNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
| | - G. Emerens Wensink
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European HospitalAssistance publique–Hôpitaux de Paris, SIRIC CARPEM, University Paris CitéParisFrance
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - David Tougeron
- Hepato‐Gastroenterology DepartmentPoitiers University Hospital, University of PoitiersPoitiersFrance
| | - Jeanine M. L. Roodhart
- Department of Medical Oncology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
15
|
Shimozaki K, Nakayama I, Hirota T, Yamaguchi K. Current Strategy to Treat Immunogenic Gastrointestinal Cancers: Perspectives for a New Era. Cells 2023; 12:1049. [PMID: 37048122 PMCID: PMC10093684 DOI: 10.3390/cells12071049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Since pembrolizumab, an anti-programmed death-1 (PD-1) antibody, showed a dramatic response to immunogenic cancers with microsatellite instability-high (MSI-H) and/or deficient mismatch repair (dMMR) in the pilot clinical trial KEYNOTE-016, subsequent studies have confirmed durable responses of anti-PD-1 inhibitors for MSI-H/dMMR solid tumors. As immunotherapy is described as a "game changer," the therapeutic landscape for MSI-H/dMMR solid tumors including gastrointestinal cancers has changed considerably in the last decade. An MSI/MMR status has been established as the predictive biomarker for immune checkpoint blockades, playing an indispensable role in the clinical practice of patients with MSI-H/dMMR tumors. Immunotherapy is also now investigated for locally advanced MSI-H/dMMR gastrointestinal cancers. Despite this great success, a few populations with MSI-H/dMMR gastrointestinal cancers do not respond to immunotherapy, possibly due to the existence of intrinsic or acquired resistance mechanisms. Clarifying the underlying mechanisms of resistance remains a future task, whereas attempts to overcome resistance and improve the efficacy of immunotherapy are currently ongoing. Herein, we review recent clinical trials with special attention to MSI-H/dMMR gastrointestinal cancers together with basic/translational findings, which provide their rationale, and discuss perspectives for the further therapeutic development of treatment in this field.
Collapse
Affiliation(s)
- Keitaro Shimozaki
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Izuma Nakayama
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| | - Toru Hirota
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastrointestinal Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-0063, Japan
| |
Collapse
|
16
|
Jeong KY. Challenges to addressing the unmet medical needs for immunotherapy targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:215-224. [PMID: 36908316 PMCID: PMC9994045 DOI: 10.4251/wjgo.v15.i2.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
With the establishment of the immune surveillance mechanism since the 1950s, attempts have been made to activate the immune system for cancer treatment through the discovery of various cytokines or the development of antibodies up to now. The fruits of these efforts have contributed to the recognition of the 3rd generation of anticancer immunotherapy as the mainstream of cancer treatment. However, the limitations of cancer immunotherapy are also being recognized through the conceptual establishment of cold tumors recently, and colorectal cancer (CRC) has become a major issue from this therapeutic point of view. Here, it is emphasized that non-clinical strategies to overcome the immunosuppressive environment and clinical trials based on these basic investigations are being made on the journey to achieve better treatment outcomes for the treatment of cold CRC.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development Center, PearlsinMires, Seoul 03690, South Korea
| |
Collapse
|
17
|
Mengoli V, Ceppi I, Sanchez A, Cannavo E, Halder S, Scaglione S, Gaillard P, McHugh PJ, Riesen N, Pettazzoni P, Cejka P. WRN helicase and mismatch repair complexes independently and synergistically disrupt cruciform DNA structures. EMBO J 2023; 42:e111998. [PMID: 36541070 PMCID: PMC9890227 DOI: 10.15252/embj.2022111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSβ (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.
Collapse
Affiliation(s)
- Valentina Mengoli
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Ilaria Ceppi
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Aurore Sanchez
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Elda Cannavo
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Swagata Halder
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Pierre‐Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Nathalie Riesen
- Roche Pharma Research & Early Development pREDRoche Innovation CenterBaselSwitzerland
| | | | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)BellinzonaSwitzerland
- Department of Biology, Institute of BiochemistryEidgenössische Technische Hochschule (ETH)ZürichSwitzerland
| |
Collapse
|
18
|
Athikkavil FM, Aiswarya SU, Johny R, Sudhesh M, Nisthul AA, Lankalapalli RS, Anto RJ, Bava SV. A potent bioactive fraction against colon cancer from Plectranthus vettiveroides. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:227-239. [PMID: 37205312 PMCID: PMC10185442 DOI: 10.37349/etat.2023.00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 05/21/2023] Open
Abstract
Aim This study was designed to investigate the anticancer efficacy of the organic leaf extracts of the plant, Plectranthus vettiveroides (P. vettiveroides), and to analyze the molecular mechanism of the anticancer activity. Methods The leaf extracts were prepared by polarity-graded serial extraction of the dried leaf powder. The cytotoxic effect of the extracts was analyzed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The most active ethyl acetate extract was subjected to bioactivity-guided fractionation by column chromatography, which yielded a cytotoxic fraction designated as the P. vettiveroides fraction (PVF). The anticancer property of PVF was confirmed further by clonogenic assay. The mechanism of PVF-induced cell death was analyzed by flow cytometry and fluorescence microscopy. Additionally, the effects of PVF on apoptotic and cell survival pathways were analyzed using western immunoblot analysis. Results A bioactive fraction PVF, was isolated from the ethyl acetate leaf extract. PVF showed significant anticancer activity against colon cancer cells, whilst normal cells were comparatively less affected. PVF induced strong apoptotic stimuli in colorectal carcinoma cell line HCT116, involving both extrinsic and intrinsic pathways. Investigation into the molecular mechanism of anticancer activity of PVF in HCT116 cells revealed that the fraction activates the pro-apoptotic pathway via tumor suppressor protein 53 (p53) and inhibits the anti-apoptotic pathway by regulating phosphatidylinositol 3-kinase (PI3K) signaling. Conclusions The findings of this study demonstrate, with mechanism-based evidence, the chemotherapeutic potential of a bioactive fraction PVF, derived from the leaves of the medicinal plant P. vettiveroides against colon cancer.
Collapse
Affiliation(s)
- Faisal M. Athikkavil
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Sreekumar U. Aiswarya
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Remya Johny
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Meghna Sudhesh
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Amrutha A. Nisthul
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
| | - Ravi S. Lankalapalli
- Chemical Sciences and Technology Division, Council for Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruby J. Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Ruby J. Anto, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| | - Smitha V. Bava
- Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India
- Correspondence: Smitha V. Bava, Molecular Oncology Laboratory, Department of Biotechnology, University of Calicut, Malappuram 673635, India.
| |
Collapse
|
19
|
Liang M, Wang X, Cai D, Guan W, Shen X. Tissue-resident memory T cells in gastrointestinal tumors: turning immune desert into immune oasis. Front Immunol 2023; 14:1119383. [PMID: 36969190 PMCID: PMC10033836 DOI: 10.3389/fimmu.2023.1119383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue-resident memory T cells (Trm) are a particular type of T cell subgroup, which stably reside in tissues and have been revealed to be the most abundant memory T cell population in various tissues. They can be activated in the local microenvironment by infection or tumor cells and rapidly clean them up to restore homeostasis of local immunity in gastrointestinal tissues. Emerging evidence has shown that tissue-resident memory T cells have great potential to be mucosal guardians against gastrointestinal tumors. Therefore, they are considered potential immune markers for immunotherapy of gastrointestinal tumors and potential extraction objects for cell therapy with essential prospects in clinical translational therapy. This paper systematically reviews the role of tissue-resident memory T cells in gastrointestinal tumors and looks to the future of their prospect in immunotherapy to provide a reference for clinical application.
Collapse
|
20
|
Kunac N, Degoricija M, Viculin J, Omerović J, Terzić J, Vilović K, Korac-Prlic J. Activation of cGAS-STING Pathway Is Associated with MSI-H Stage IV Colorectal Cancer. Cancers (Basel) 2022; 15:cancers15010221. [PMID: 36612217 PMCID: PMC9818394 DOI: 10.3390/cancers15010221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is the second most common cause of cancer-related mortality in adults. Understanding colorectal tumorigenesis at both the cellular and molecular levels is crucial for developing effective treatment options. Forty-one biopsy samples from patients with metastatic CRC (mCRC) were collected at Split University Hospital in Croatia. A total of 41 patients (21 with microsatellite unstable tumours and 20 with microsatellite stable tumours) were randomly included in the study. Immunolabelling of cGAS and STING in metastatic CRC was performed and further complemented by histological classification, tumour grade, and KRAS, NRAS, and BRAF mutational status of mCRC. In bivariate analysis, elevated expression of cGAS and STING was positively associated with MSI-H colon cancer (Fisher's exact test, both p = 0.0203). Combined expression analysis of cGAS and STING showed a significantly higher percentage of patients with mCRC MSI-H with a fully or partially activated cGAS-STING signalling pathway (chi-square test, p = 0.0050). After adjusting for age, sex, and STING expression, increased cGAS expression remained significantly associated with MSI-H colon cancer in a multiple logistic regression model (β = 1.588, SE = ±0.799, p = 0.047). The cGAS-STING signalling axis represents a compelling new target for optimization of immune checkpoint inhibitor therapeutic approaches in patients with MSI-H stage IV CRC.
Collapse
Affiliation(s)
- Nenad Kunac
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, 21000 Split, Croatia
| | - Marina Degoricija
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Viculin
- Department of Oncology, University Hospital Centre Split, 21000 Split, Croatia
| | - Jasminka Omerović
- Laboratory for Cancer Research, Department of Immunology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Janoš Terzić
- Laboratory for Cancer Research, Department of Immunology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, 21000 Split, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, Department of Immunology, School of Medicine, University of Split, 21000 Split, Croatia
- Correspondence: ; Tel.: +385-21557877; Fax: +385-21557880
| |
Collapse
|
21
|
Yamada A, Yamamoto Y, Minamiguchi S, Kamada M, Sunami T, Ohashi S, Seno H, Kawada K, Muto M. Clinicopathological and molecular characterization of deficient mismatch repair colorectal cancer. Hum Pathol 2022; 130:1-9. [PMID: 36150551 DOI: 10.1016/j.humpath.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Tumors demonstrating deficient mismatch repair (dMMR) account for 12%-15% of colorectal cancers (CRCs), but their characteristics have not been fully elucidated. The aim of this study was to characterize dMMR CRCs in terms of clinicopathological findings and molecular alterations. Immunostaining for mismatch repair (MMR) proteins was performed to determine MMR status, and then MLH1 promoter methylation and genetic variants of 25 genes involved in colorectal carcinogenesis were analyzed by next-generation sequencing in dMMR tumors. Coexistence of precancerous lesions was histologically evaluated to characterize the type of precursors. Immunohistochemistry revealed 34 dMMR tumors in 492 CRCs. Among dMMR CRCs, there were 25 MLH1 methylation-positive, 16 BRAF V600E variant-positive, and 7 KRAS variant-positive tumors. Positive MLH1 methylation was associated with BRAF V600E, older age, and right-side tumor location. MLH1 methylated BRAF/KRAS wild-type tumors were distinct in that all 5 tumors possessed variants in ligand-independent WNT signaling genes including APC, AXIN2, and CTNNB1. Among 10 dMMR CRCs that presented with precancerous lesions, 4 BRAF variant-positive, 1 KRAS variant-positive, and 2 BRAF/KRAS wild-type MLH1 methylated tumors coexisted with serrated lesions, whereas 1 MLH1 methylated BRAF/KRAS wild-type tumor and 2 MLH1 unmethylated tumors accompanied conventional adenomas. The present study characterized distinct subgroups of dMMR CRCs based on molecular alterations including MLH1 methylation and variants in BRAF, KRAS, and ligand-independent WNT signaling genes. The existence of distinct precursor lesions including serrated lesion and conventional adenoma further illustrates the involvement of heterogeneous carcinogenetic pathways in the development of dMMR CRCs.
Collapse
Affiliation(s)
- Atsushi Yamada
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, 606-8507, Japan; Department of Clinical Data Science Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yoshihiro Yamamoto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, 53 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomohiko Sunami
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, 606-8507, Japan; Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manabu Muto
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, 606-8507, Japan; Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
22
|
Han S, Chok AY, Peh DYY, Ho JZM, Tan EKW, Koo SL, Tan IBH, Ong JCA. The distinct clinical trajectory, metastatic sites, and immunobiology of microsatellite-instability-high cancers. Front Genet 2022; 13:933475. [DOI: 10.3389/fgene.2022.933475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Microsatellite-instability-high (MSI-H) cancers form a spectrum of solid organ tumors collectively known as Lynch Syndrome cancers, occurring not only in a subset of colorectal, endometrial, small bowel, gastric, pancreatic, and biliary tract cancers but also in prostate, breast, bladder, and thyroid cancers. Patients with Lynch Syndrome harbor germline mutations in mismatch repair genes, with a high degree of genomic instability, leading to somatic hypermutations and, therefore, oncogenesis and cancer progression. MSI-H cancers have unique clinicopathological characteristics compared to their microsatellite-stable (MSS) counterparts, marked by a higher neoantigen load, immune cell infiltration, and a marked clinical response to immune checkpoint blockade. Patients with known Lynch Syndrome may be detected early through surveillance, but some patients present with disseminated metastatic disease. The treatment landscape of MSI-H cancers, especially colorectal cancers, has undergone a paradigm shift and remains to be defined, with immune checkpoint blockade coming to the forefront of treatment strategies in the stage IV setting. We summarize in this review the clinical features of MSI-H cancers with a specific interest in the pattern of spread or recurrence, disease trajectory, and treatment strategies. We also summarize the tumor-immune landscape and genomic profile of MSI-H cancers and potential novel therapeutic strategies.
Collapse
|
23
|
Role of the cGAS-STING pathway in regulating the tumor-immune microenvironment in dMMR/MSI colorectal cancer. Cancer Immunol Immunother 2022; 71:2765-2776. [PMID: 35429245 DOI: 10.1007/s00262-022-03200-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022]
Abstract
Deficient mismatch repair (dMMR)/microsatellite instability (MSI) colorectal cancer (CRC) has high immunogenicity and better prognosis compared with proficient MMR (pMMR)/microsatellite stable (MSS) CRC. Although the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been considered to contribute to the high number of CD8+ TILs, its role in dMMR/MSI CRC is largely unknown. In this study, to examine the role of the cGAS-STING pathway on the recruitment of CD8+ TILs in dMMR/MSI CRC, we used public datasets and clinical tissue samples in our cohorts to evaluate the expression of cGAS, STING, and CD8+ TILs in pMMR/MSS and dMMR/MSI CRCs. According to the analysis of public datasets, the expression of cGAS-STING, CD8 effector gene signature, and CXCL10-CCL5, chemoattractants for CD8+ TILs which regulated by the cGAS-STING pathway, was significantly upregulated in dMMR/MSI CRC, and the expression of cGAS-STING was significantly associated with the expression of CD8 effector gene signature. Immunohistochemistry staining of the clinical tissue samples (n = 283) revealed that cGAS-STING was highly expressed in tumor cells of dMMR CRC, and higher expression of cGAS-STING in tumor cells was significantly associated with the increased number of CD8+ TILs. Moreover, we demonstrated that the downregulation of MMR gene in human CRC cell lines enhanced the activation of the cGAS-STING pathway. Taken together, for the first time, we found that dMMR/MSI CRC has maintained a high level of cGAS-STING expression in tumor cells, which might contribute to abundant CD8+ TILs and immune-active TME.
Collapse
|
24
|
Barraud S, Tougeron D, Villeneuve L, Eveno C, Bayle A, Parc Y, Pocard M, André T, Cohen R. Immune checkpoint inhibitors for patients with isolated peritoneal carcinomatosis from dMMR/MSI-H colorectal cancer, a BIG-RENAPE collaboration. Dig Liver Dis 2022; 55:673-678. [PMID: 36266207 DOI: 10.1016/j.dld.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors has significantly improved the survival of patients with MSI/dMMR mCRC. These tumors are associated with a specific metastatic spread, i.e. frequent peritoneal carcinomatosis (PC) that may be treated surgically when there is no other metastatic location. We aimed at evaluating the prognosis of patients treated with immune checkpoint inhibitors for MSI/dMMR mCRC with isolated PC. MATERIAL AND METHODS All consecutive patients with isolated PC from MSI/dMMR mCRC, initially considered as unresectable by multidisciplinary team meeting, treated with immune checkpoint inhibitors were included in this French multicenter cohort study. RESULTS Among 45 patients included, we observed 11 complete responses and 10 partial responses for an overall response rate iRECIST of 46%. After a median follow-up of 24.4 months, the median progression-free survival (PFS) and overall survival (OS) were not reached. Seven of the eight patients who underwent cytoreductive surgery after treatment with anti-PD1 ± anti-CTLA-4 were in complete pathologic response. CONCLUSION These results demonstrate long-term benefit of immune checkpoint inhibitors for patients with isolated PC from MSI/dMMR mCRC. Such treatment appears as the best therapeutic option for patients with isolated PC from MSI/dMMR mCRC. With a majority of pathological complete responses for patients who underwent surgery for residual lesions, the value of such therapeutic strategy remains unknown.
Collapse
Affiliation(s)
- Solenn Barraud
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - David Tougeron
- Université de Poitiers, Faculté de Médecine et de Pharmacie and Department of Hepatology and Gastroenterology, Centre hospitalo-universitaire de Poitiers, Poitiers, France
| | - Laurent Villeneuve
- Clinical Research and Epidemiological Unit, Department of Public Health, Lyon University Hospital, EA 3738, University of Lyon, Lyon, France
| | - Clarisse Eveno
- Department of Digestive and Oncological Surgery, Claude Huriez University Hospital, and UMR- S1277- CANTHER Laboratory, "Cancer Heterogeneity, Plasticity and Resistance to Therapies", Lille, France
| | - Arnaud Bayle
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Oncostat U1018, Inserm, Université Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Yann Parc
- Sorbonne Université, Department of Digestive Surgery, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Marc Pocard
- Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique/Hôpitaux de Paris, and Université Paris Cité, UMR INSERM 1275 CAP Paris-Tech, Lariboisière Hospital, F-75010 Paris, France
| | - Thierry André
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Romain Cohen
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France.
| |
Collapse
|
25
|
Coutzac C, Bibeau F, Ben Abdelghani M, Aparicio T, Cohen R, Coquan E, Dubreuil O, Evesque L, Ghiringhelli F, Kim S, Lesourd S, Neuzillet C, Phelip JM, Piessen G, Rochigneux P, Samalin E, Soularue E, Touchefeu Y, Tougeron D, Zaanan A, de la Fouchardière C. Immunotherapy in MSI/dMMR tumors in the perioperative setting: The IMHOTEP trial. Dig Liver Dis 2022; 54:1335-1341. [PMID: 35907691 DOI: 10.1016/j.dld.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/17/2022] [Accepted: 07/09/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) targeting Programmed death-1 (PD-1) have shown their efficacy in advanced MSI/dMMR (microsatellite instability/deficient mismatch repair) tumors. The MSI/dMMR status predicts clinical response to ICI. The promising results evaluating ICI in localized MSI/dMMR tumors in neoadjuvant setting need to be confirmed in MSI/dMMR solid tumors. The aim of the IMHOTEP trial is to assess the efficacy of neoadjuvant anti-PD-1 treatment in MSI/dMMR tumors regarding the pathological complete response rate. METHODS This study is a prospective, multicenter, phase II study including 120 patients with localized MSI/dMMR carcinomas suitable for curative surgery. A single dose of pembrolizumab will be administered before the surgery planned 6 weeks later. Primary objective is to evaluate the efficacy of neoadjuvant pembrolizumab according to pathological complete tumor response. Secondary objectives are to assess safety, recurrence-free survival and overall survival. Ancillary studies will assess molecular and immunological biomarkers predicting response/resistance to ICI. First patient was enrolled in December 2021. DISCUSSION The IMHOTEP trial will be one of the first clinical trial investigating perioperative ICI in localized MSI/dMMR in a tumor agnostic setting. Assessing neoadjuvant anti-PD-1 is mandatory to improve MSI/dMMR patient's outcomes. The translational program will explore potential biomarker to improve our understanding of immune escape and response in this ICI neoadjuvant setting.
Collapse
Affiliation(s)
- Clélia Coutzac
- Medical Oncology Department, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France; Cancer Research Center of Lyon (CRCL), UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Frederic Bibeau
- Department of pathology, Besançon University Hospital, Besançon, France
| | | | - Thomas Aparicio
- AP-HP, Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, Paris, France
| | - Romain Cohen
- AP-HP, INSERM, Sorbonne University, Saint-Antoine Hospital, Unité Mixte de Recherche Scientifique 938, Paris 75012, France
| | - Elodie Coquan
- Department of Medical Oncology, Center François Baclesse, Caen, France
| | - Olivier Dubreuil
- Department of Digestive Oncology, Groupe hospitalier Diaconesses Croix Saint Simon, Paris, France
| | - Ludovic Evesque
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | | | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon 25000, France
| | - Samuel Lesourd
- Medical Oncology, Centre Eugène Marquis, Rennes 35000, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, Versailles Saint-Quentin University (UVSQ) - Paris Saclay University, Saint-Cloud, France
| | | | - Guillaume Piessen
- Department of Digestive and Oncological Surgery, Claude Huriez University Hospital, Lille F-59000, France
| | - Philippe Rochigneux
- Medical Oncology Department, Paoli-Calmettes Institute, Aix-Marseille University, Marseille, France
| | - Emmanuelle Samalin
- Department of medical Oncology, Institut régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
| | - Emilie Soularue
- Department of Oncology, Institute Mutualiste Montsouris, Paris 75014, France
| | - Yann Touchefeu
- CHU Nantes, Institut des Maladies de l'Appareil Digestif (IMAD), Hépato-Gastroentérologie, Inserm CIC 1413, Nantes Université, Nantes F-44000, France
| | - David Tougeron
- Department of Hepato-gastroenterology, Centre Hospitalo-Universitaire Poitiers, Poitiers 86000, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christelle de la Fouchardière
- Medical Oncology Department, Centre Léon Bérard, 28 rue Laennec, Lyon 69008, France; Cancer Research Center of Lyon (CRCL), UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
26
|
Komatsu Y, Shigeyasu K, Yano S, Takeda S, Takahashi K, Hata N, Umeda H, Yoshida K, Mori Y, Yasui K, Yoshida R, Kondo Y, Kishimoto H, Teraishi F, Umeda Y, Kagawa S, Michiue H, Tazawa H, Goel A, Fujiwara T. RNA editing facilitates the enhanced production of neoantigens during the simultaneous administration of oxaliplatin and radiotherapy in colorectal cancer. Sci Rep 2022; 12:13540. [PMID: 35941214 PMCID: PMC9360398 DOI: 10.1038/s41598-022-17773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
Most cases of colorectal cancers (CRCs) are microsatellite stable (MSS), which frequently demonstrate lower response rates to immune checkpoint inhibitors (ICIs). RNA editing produces neoantigens by altering amino acid sequences. In this study, RNA editing was induced artificially by chemoradiation therapy (CRT) to generate neoantigens in MSS CRCs. Altogether, 543 CRC specimens were systematically analyzed, and the expression pattern of ADAR1 was investigated. In vitro and in vivo experiments were also performed. The RNA editing enzyme ADAR1 was upregulated in microsatellite instability-high CRCs, leading to their high affinity for ICIs. Although ADAR1 expression was low in MSS CRC, CRT including oxaliplatin (OX) treatment upregulated RNA editing levels by inducing ADAR1. Immunohistochemistry analyses showed the upregulation of ADAR1 in patients with CRC treated with CAPOX (capecitabine + OX) radiation therapy relative to ADAR1 expression in patients with CRC treated only by surgery (p < 0.001). Compared with other regimens, CRT with OX effectively induced RNA editing in MSS CRC cell lines (HT29 and Caco2, p < 0.001) via the induction of type 1 interferon-triggered ADAR1 expression. CRT with OX promoted the RNA editing of cyclin I, a neoantigen candidate. Neoantigens can be artificially induced by RNA editing via an OX-CRT regimen. CRT can promote proteomic diversity via RNA editing.
Collapse
Affiliation(s)
- Yasuhiro Komatsu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazutaka Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nanako Hata
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hibiki Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Biomedical Research Center, Monrovia, CA, USA.,City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
27
|
Chen H, Zhang J, Zhou H, Zhu Y, Liang Y, Zhu P, Zhang Q. UHPLC-HRMS–based serum lipisdomics reveals novel biomarkers to assist in the discrimination between colorectal adenoma and cancer. Front Oncol 2022; 12:934145. [PMID: 35965551 PMCID: PMC9366052 DOI: 10.3389/fonc.2022.934145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The development of a colorectal adenoma (CA) into carcinoma (CRC) is a long and stealthy process. There remains a lack of reliable biomarkers to distinguish CA from CRC. To effectively explore underlying molecular mechanisms and identify novel lipid biomarkers promising for early diagnosis of CRC, an ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS) method was employed to comprehensively measure lipid species in human serum samples of patients with CA and CRC. Results showed significant differences in serum lipid profiles between CA and CRC groups, and 85 differential lipid species (P < 0.05 and fold change > 1.50 or < 0.67) were discovered. These significantly altered lipid species were mainly involved in fatty acid (FA), phosphatidylcholine (PC), and triacylglycerol (TAG) metabolism with the constituent ratio > 63.50%. After performance evaluation by the receiver operating characteristic (ROC) curve analysis, seven lipid species were ultimately proposed as potential biomarkers with the area under the curve (AUC) > 0.800. Of particular value, a lipid panel containing docosanamide, SM d36:0, PC 36:1e, and triheptanoin was selected as a composite candidate biomarker with excellent performance (AUC = 0.971), and the highest selected frequency to distinguish patients with CA from patients with CRC based on the support vector machine (SVM) classification model. To our knowledge, this study was the first to undertake a lipidomics profile using serum intended to identify screening lipid biomarkers to discriminate between CA and CRC. The lipid panel could potentially serve as a composite biomarker aiding the early diagnosis of CRC. Metabolic dysregulation of FAs, PCs, and TAGs seems likely involved in malignant transformation of CA, which hopefully will provide new clues to understand its underlying mechanism.
Collapse
Affiliation(s)
- Hongwei Chen
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Jiahao Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Hailin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Yifan Zhu
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Yunxiao Liang
- Department of Gastroenterology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qisong Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, China
- *Correspondence: Qisong Zhang,
| |
Collapse
|
28
|
Abstract
Although hematopoietic stem cells (HSCs) in the bone marrow are in a state of quiescence, they harbor the self-renewal capacity and the pluripotency to differentiate into mature blood cells when needed, which is key to maintain hematopoietic homeostasis. Importantly, HSCs are characterized by their long lifespan ( e. g., up to 60 months for mice), display characteristics of aging, and are vulnerable to various endogenous and exogenous genotoxic stresses. Generally, DNA damage in HSCs is endogenous, which is typically induced by reactive oxygen species (ROS), aldehydes, and replication stress. Mammalian cells have evolved a complex and efficient DNA repair system to cope with various DNA lesions to maintain genomic stability. The repair machinery for DNA damage in HSCs has its own characteristics. For instance, the Fanconi anemia (FA)/BRCA pathway is particularly important for the hematopoietic system, as it can limit the damage caused by DNA inter-strand crosslinks, oxidative stress, and replication stress to HSCs to prevent FA occurrence. In addition, HSCs prefer to utilize the classical non-homologous end-joining pathway, which is essential for the V(D)J rearrangement in developing lymphocytes and is involved in double-strand break repair to maintain genomic stability in the long-term quiescent state. In contrast, the base excision repair pathway is less involved in the hematopoietic system. In this review, we summarize the impact of various types of DNA damage on HSC function and review our knowledge of the corresponding repair mechanisms and related human genetic diseases.
Collapse
|
29
|
Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29:3044-3060. [PMID: 35621637 PMCID: PMC9139602 DOI: 10.3390/curroncol29050247] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer. The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately, not all patients respond favourably to these drugs, highlighting the role of biomarkers such as Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in predicting responses to ICIs-based immunotherapy. The current study aims to review the literature and updates on ICIs in cancer therapy.
Collapse
|
30
|
Zhang X, Li H, Lv X, Hu L, Li W, Zi M, He Y. Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy against Tumors. Life (Basel) 2022; 12:409. [PMID: 35330159 PMCID: PMC8951256 DOI: 10.3390/life12030409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the established therapeutics against tumors. As the major immunotherapy approach, immune checkpoint inhibitors (ICIs) achieved remarkable success in the treatment of malignancies. However, the clinical gains are far from universal and durable, because of the primary and secondary resistance of tumors to the therapy, or side effects induced by ICIs. There is an urgent need to find safe combinatorial strategies that enhance the response of ICIs for tumor treatment. Diets have an excellent safety profile and have been shown to play pleiotropic roles in tumor prevention, growth, invasion, and metastasis. Accumulating evidence suggests that dietary regimens bolster not only the tolerability but also the efficacy of tumor immunotherapy. In this review, we discussed the mechanisms by which tumor cells evade immune surveillance, focusing on describing the intrinsic and extrinsic mechanisms of resistance to ICIs. We also summarized the impacts of different diets and/or nutrients on the response to ICIs therapy. Combinatory treatments of ICIs therapy with optimized diet regimens own great potential to enhance the efficacy and durable response of ICIs against tumors, which should be routinely considered in clinical settings.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Nutrition, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiupeng Lv
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Li Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Wen Li
- Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming 650011, China;
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (H.L.); (L.H.); (M.Z.)
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
31
|
Bui QL, Mas L, Hollebecque A, Tougeron D, de la Fouchardière C, Pudlarz T, Alouani E, Guimbaud R, Taieb J, André T, Colle R, Cohen R. Treatments after Immune Checkpoint Inhibitors in Patients with dMMR/MSI Metastatic Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14020406. [PMID: 35053568 PMCID: PMC8774125 DOI: 10.3390/cancers14020406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Several studies suggested an enhanced efficacy of conventional treatments (CT, i.e., chemotherapy +/− targeted therapy) administered after immune checkpoint inhibitors (ICI) in certain tumor types, but no data are available concerning metastatic colorectal cancer (mCRC) patients harboring mismatch repair deficiency/microsatellite instability (dMMR/MSI). The aim of our study was to assess the outcomes of dMMR/MSI mCRC patients receiving CT after ICI failure. We retrospectively collected clinical data from a multicentric cohort of 31 patients. Although limited by the small number of patients, our results did not suggest improved outcomes with CT in our population, and no significant association with previous ICI efficacy or with anti-VEGF agents was evidenced. However, prolonged disease control was observed in several cases, suggesting that some patients might derive an unexpected benefit from post-ICI treatments. With ICI becoming the standard of care in patients newly diagnosed with dMMR/MSI mCRC, these results might help to inform clinical decision-making and to guide future therapeutic strategies for these patients. Abstract Background: Several studies reported improved outcomes with conventional treatments (CT, i.e., chemotherapy ± targeted therapy) administered after immune checkpoints inhibitors (ICI) in certain tumor types. No data are available concerning patients (pts) with metastatic colorectal cancer (mCRC) harboring mismatch repair deficiency/microsatellite instability (dMMR/MSI). We aimed to assess the outcomes of dMMR/MSI mCRC pts receiving CT after ICI failure. Methods: We conducted a retrospective multicenter study investigating the outcomes of all dMMR/MSI mCRC pts who received post-ICI CT between 2015 and 2020. Results: 31 pts (male 61%, median age 56 years) were included. ICI was an anti-PD(L)1 monotherapy in 71% of pts, and 61% received >2 lines before post-ICI CT. The overall response rate and disease control rate were 13% and 45%, with a median progression-free survival (PFS) and overall survival of 2.9 and 7.4 months, respectively. No association of the outcomes with either ICI efficacy or anti-angiogenic agents was observed. Prolonged PFS (range 16.1–21.3 months) was observed in 4 pts (13%). Conclusions: Although conducted on a limited number of patients, our results do not support an association of previous ICI treatment with an enhanced efficacy of CT in dMMR/MSI mCRC. However, prolonged disease control was observed in several cases, suggesting that some pts might derive an unexpected benefit from post-ICI treatments.
Collapse
Affiliation(s)
- Quang Loc Bui
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France; (Q.L.B.); (L.M.); (T.P.); (T.A.); (R.C.)
- The Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi 116300, Vietnam
- School of Medicine and Pharmacy, Vietnam National University, Hanoi 123105, Vietnam
| | - Léo Mas
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France; (Q.L.B.); (L.M.); (T.P.); (T.A.); (R.C.)
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy, Saclay University of Paris, 94800 Villejuif, France;
| | - David Tougeron
- Department of Gastroenterology, Poitiers University Hospital, 86000 Poitiers, France;
| | | | - Thomas Pudlarz
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France; (Q.L.B.); (L.M.); (T.P.); (T.A.); (R.C.)
| | - Emily Alouani
- Digestive Medical Oncology Department, CHU Toulouse—IUCT Rangueil-Larrey, 31059 Toulouse, France; (E.A.); (R.G.)
| | - Rosine Guimbaud
- Digestive Medical Oncology Department, CHU Toulouse—IUCT Rangueil-Larrey, 31059 Toulouse, France; (E.A.); (R.G.)
| | - Julien Taieb
- Department of Digestive Oncology, Georges Pompidou European Hospital, Paris Descartes University, Sorbonne Paris Cité, 75004 Paris, France;
| | - Thierry André
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France; (Q.L.B.); (L.M.); (T.P.); (T.A.); (R.C.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM Unité Mixte de Recherche Scientifique 938, Sorbonne Université, 75012 Paris, France
| | - Raphaël Colle
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France; (Q.L.B.); (L.M.); (T.P.); (T.A.); (R.C.)
| | - Romain Cohen
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Sorbonne Université, 75012 Paris, France; (Q.L.B.); (L.M.); (T.P.); (T.A.); (R.C.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, INSERM Unité Mixte de Recherche Scientifique 938, Sorbonne Université, 75012 Paris, France
- Correspondence:
| |
Collapse
|
32
|
Distinct Hypoxia-Related Gene Profiling Characterizes Clinicopathological Features and Immune Status of Mismatch Repair-Deficient Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2427427. [PMID: 34917146 PMCID: PMC8670907 DOI: 10.1155/2021/2427427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/09/2022]
Abstract
Despite dramatic responses to immune checkpoint inhibitors (ICIs) in patients with colon cancer (CC) harboring deficient mismatch repair (dMMR), more than half of these patients ultimately progress and experience primary or secondary drug resistance. There is no useful biomarker that is currently validated to accurately predict this resistance or stratify patients who may benefit from ICI-based immunotherapy. As hypoxic and acidic tumor microenvironment would greatly impair tumor-suppressing functions of tumor-infiltrating lymphocytes (TILs), we sought to explore distinct immunological phenotypes by analysis of the intratumoral hypoxia state using a well-established gene signature. Based on the Gene Expression Omnibus (GEO) (n = 88) and The Cancer Genome Atlas (TCGA) (n = 49) databases of patients with CC, we found that dMMR CC patients could be separated into normoxia subgroup (NS) and hypoxia subgroup (HS) with different levels of expression of hypoxia-related genes (lower in NS group and higher in HS group) using NMF package. Tumoral parenchyma in the HS group had a relatively lower level of immune cell infiltration, particularly CD8+ T cells and M1 macrophages than the NS group, and coincided with higher expression of immune checkpoint molecules and C-X-C motif chemokines, which might be associated with ICI resistance and prognosis. Furthermore, three genes, namely, MT1E, MT2A, and MAFF, were identified to be differentially expressed between NS and HS groups in both GEO and TCGA cohorts. Based on these genes, a prognostic model with stable and valuable predicting ability has been built for clinical application. In conclusion, the varying tumor-immune microenvironment (TIME) classified by hypoxia-related genes might be closely associated with different therapeutic responses of ICIs and prognosis of dMMR CC patients.
Collapse
|
33
|
Zhu Y, Wang L, Nong Y, Liang Y, Huang Z, Zhu P, Zhang Q. Serum Untargeted UHPLC-HRMS-Based Lipidomics to Discover the Potential Biomarker of Colorectal Advanced Adenoma. Cancer Manag Res 2021; 13:8865-8878. [PMID: 34858060 PMCID: PMC8632617 DOI: 10.2147/cmar.s336322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background As a key precancerous lesion, colorectal advanced adenoma (CAA) is closely related to the occurrence and development of colorectal cancer (CRC). Effective identification of CAA-related biomarkers can prevent CRC morbidity and mortality. Lipids, as an important endogenous substance, have been proved to be involved in the occurrence and development of CRC. Lipidomics is an advanced technique that studies lipid metabolism and biomarkers of diseases. However, there are no lipidomics studies based on large serum samples to explore diagnostic biomarkers for CAA. Methods An integrated serum lipid profile from 50 normal (NR) and 46 CAA subjects was performed using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS). Lipidomic data were acquired for negative and positive ionization modes, respectively. Differential lipids were selected by univariate and multivariate statistics analyses. A receiver operator characteristic curve (ROC) analysis was conducted to evaluate the diagnostic performance of differential lipids. Results A total of 53 differential lipids were obtained by combining univariate and multivariate statistical analyses (P < 0.05 and VIP > 1). In addition, 12 differential lipids showed good diagnostic performance (AUC > 0.90) for the discrimination of NR and CAA by receiver operating characteristic curve (ROC) analysis. Of them, the performance of PC 44:5 and PC 35:6e presented the outstanding performance (AUC = 1.00, (95% CI, 1.00–1.00)). Moreover, triglyceride (TAG) had the highest proportion (37.74%) as the major dysregulated lipids in the CAA. Conclusion This is the first study that profiled serum lipidomics and explored lipid biomarkers with good diagnostic ability of CAA to contribute to the early prevention of CRC. Twelve differential lipids that effectively discriminate between NR and CAA serve as the potential diagnostic markers of CAA. An obvious perturbation of TAG metabolism could be involved in the CAA formation.
Collapse
Affiliation(s)
- Yifan Zhu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Lisheng Wang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Yanying Nong
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, People's Republic of China
| | - Yunxiao Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Zongsheng Huang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Qisong Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| |
Collapse
|
34
|
Lin T, Zhang Y, Lin Z, Peng L. Roles of HMGBs in Prognosis and Immunotherapy: A Pan-Cancer Analysis. Front Genet 2021; 12:764245. [PMID: 34777483 PMCID: PMC8585836 DOI: 10.3389/fgene.2021.764245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background: High mobility group box (HMGB) proteins are DNA chaperones involved in transcription, DNA repair, and genome stability. Extracellular HMGBs also act as cytokines to promote inflammatory and immune responses. Accumulating evidence has suggested that HMGBs are implicated in cancer pathogenesis; however, their prognostic and immunological values in pan-cancer are not completely clear. Methods: Multiple tools were applied to analyze the expression, genetic alternations, and prognostic and clinicopathological relevance of HMGB in pan-cancer. Correlations between HMGB expression and tumor immune-infiltrating cells (TIICs), immune checkpoint (ICP) expression, microsatellite instability (MSI), and tumor mutational burden (TMB) in pan-cancer were investigated to uncover their interactions with the tumor immune microenvironment (TIME). Gene set enrichment analysis (GSEA) was conducted for correlated genes of HMGBs to expound potential mechanisms. Results: HMGB expression was significantly elevated in various cancers. Both prognostic and clinicopathological significance was observed for HMGB1 in ACC; HMGB2 in ACC, LGG, LIHC, and SKCM; and HMGB3 in ESCA. Prognostic values were also found for HMGB2 in KIRP and MESO and HMGB3 in BRCA, SARC, SKCM, OV, and LAML. The global alternation of HMGBs showed prognostic significance in ACC, KIRC, and UCEC. Furthermore, HMGBs were significantly correlated with TIIC infiltration, ICP expression, MSI, and TMB in various cancers, indicating their regulations on the TIME. Lastly, results of GSEA-illuminated genes positively correlated with HMGBs which were similarly chromosome components participating in DNA activity-associated events. Conclusion: This study demonstrated that HMGBs might be promising predictive biomarkers for the prognosis and immunotherapeutic response, also immunotherapy targets of multiple cancers.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingzhao Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|