1
|
Mohanta S, Das NK, Goswami C. Taxol-treatment alters endogenous TRPV1 expression and mitochondrial membrane potential in mesenchymal stem cells: Relevant in chemotherapy-induced pathophysiology. Biochem Biophys Res Commun 2024; 737:150498. [PMID: 39128224 DOI: 10.1016/j.bbrc.2024.150498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Microtubule-based chemotherapeutics, primarily Taxane-derived agents are still used as the major live-saving agents, yet have several side effects including serious loss of immune cells, bone density etc. which lowers the quality of life. This imposes the need to understand the effects of these agents on Mesenchymal Stem Cells (MSCs) in details. In this work we demonstrate that Taxol and Nocodazole affects the endogenous expression of TRPV1, a non-selective cation channel in MSCs. These agents also affect the status of polymerized Actin as well as Tyrosinated-tubulin, basal cytosolic Ca2+ and mitochondrial membrane potential (ΔΨm). Notably, pharmacological modulation of TRPV1 by Capsaicin or Capsazepine can also alter the above-mentioned parameters in a context-dependent manner. We suggest that endogenous expression of TRPV1 and pharmacological modulation of TRPV1 can be utilized to rescue some of these parameters effectively. These findings may have significance in the treatments and strategies with Microtubule-based chemotherapeutics and stem-cell based therapy.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
2
|
Jin W, Hui H, Jiang J, Li B, Deng Z, Tuo X. S100A1 overexpression stimulates cell proliferation and is predictive of poor outcome in ovarian cancer. Transl Cancer Res 2024; 13:5265-5277. [PMID: 39525021 PMCID: PMC11543041 DOI: 10.21037/tcr-24-430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
Background Members of the S100 gene family are frequently dysregulated in various cancers, including ovarian cancer (OC). Despite this, the prognostic implications of individual S100 genes in OC remain poorly understood. This study aimed to explore the prognostic significance of S100A1 expression in OC and assess its potential as a therapeutic target. Methods To investigate the role of S100A1 in OC, we utilized the Gene Expression Profiling Interactive Analysis (GEPIA) database and the University of ALabama at Birmingham Cancer Data Analysis Portal (UALCAN) database. Protein levels of S100A1 in OC tissues were assessed using western blotting and immunohistochemistry. Bioinformatics analyses were performed to correlate S100A1 expression with clinical outcomes. Functional assays were conducted to evaluate the impact of S100A1 knockout on OC cell proliferation and migration. Additionally, we investigated the effect of S100A1 on ferroptosis and lipid reactive oxygen species (ROS) levels in tumor cells. Results Our analyses revealed that S100A1 protein levels were significantly elevated in OC tissues compared to normal tissues. Elevated S100A1 expression was associated with poor clinical outcomes in OC patients. Functional assays demonstrated that the knockout of S100A1 led to a decrease in both proliferation and migration of OC cells in vitro. Furthermore, S100A1 was found to inhibit ferroptosis in OC cells, resulting in lower levels of lipid ROS within tumor cells. Conclusions High levels of S100A1 are indicative of adverse clinical outcomes in OC. Our findings suggest that S100A1 could serve as a valuable prognostic marker and a potential therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Wen Jin
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Hui Hui
- Department of Gynecological Oncology, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Jie Jiang
- Department of Medical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Bin Li
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhuo Deng
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaoqian Tuo
- Department of Gynecology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
3
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
4
|
Wolde T, Bhardwaj V, Reyad-ul-Ferdous M, Qin P, Pandey V. The Integrated Bioinformatic Approach Reveals the Prognostic Significance of LRP1 Expression in Ovarian Cancer. Int J Mol Sci 2024; 25:7996. [PMID: 39063239 PMCID: PMC11276689 DOI: 10.3390/ijms25147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
A hyperactive tumour microenvironment (TME) drives unrestricted cancer cell survival, drug resistance, and metastasis in ovarian carcinoma (OC). However, therapeutic targets within the TME for OC remain elusive, and efficient methods to quantify TME activity are still limited. Herein, we employed an integrated bioinformatics approach to determine which immune-related genes (IRGs) modulate the TME and further assess their potential theragnostic (therapeutic + diagnostic) significance in OC progression. Using a robust approach, we developed a predictive risk model to retrospectively examine the clinicopathological parameters of OC patients from The Cancer Genome Atlas (TCGA) database. The validity of the prognostic model was confirmed with data from the International Cancer Genome Consortium (ICGC) cohort. Our approach identified nine IRGs, AKT2, FGF7, FOS, IL27RA, LRP1, OBP2A, PAEP, PDGFRA, and PI3, that form a prognostic model in OC progression, distinguishing patients with significantly better clinical outcomes in the low-risk group. We validated this model as an independent prognostic indicator and demonstrated enhanced prognostic significance when used alongside clinical nomograms for accurate prediction. Elevated LRP1 expression, which indicates poor prognosis in bladder cancer (BLCA), OC, low-grade gliomas (LGG), and glioblastoma (GBM), was also associated with immune infiltration in several other cancers. Significant correlations with immune checkpoint genes (ICGs) highlight the potential importance of LRP1 as a biomarker and therapeutic target. Furthermore, gene set enrichment analysis highlighted LRP1's involvement in metabolism-related pathways, supporting its prognostic and therapeutic relevance also in BLCA, OC, low-grade gliomas (LGG), GBM, kidney cancer, OC, BLCA, kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), and stomach and oesophageal carcinoma (STES). Our study has generated a novel signature of nine IRGs within the TME across cancers, that could serve as potential prognostic predictors and provide a valuable resource to improve the prognosis of OC.
Collapse
Affiliation(s)
- Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Md. Reyad-ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
5
|
Liu J, Liu C, Ma Y, Pan X, Chu R, Yao S, Chen J, Liu C, Chen Z, Sheng C, Zhang K, Xue Y, Schiöth HB, Kong B, Zhang Q, Song K. STING inhibitors sensitize platinum chemotherapy in ovarian cancer by inhibiting the CGAS-STING pathway in cancer-associated fibroblasts (CAFs). Cancer Lett 2024; 588:216700. [PMID: 38373690 DOI: 10.1016/j.canlet.2024.216700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Chemotherapy resistance in ovarian cancer hampers cure rates, with cancer-associated fibroblasts (CAFs) playing a pivotal role. Despite their known impact on cancer progression and chemotherapy resistance, the specific mechanism by which CAFs regulate the tumor inflammatory environment remains unclear. This study reveals that cisplatin facilitates DNA transfer from ovarian cancer cells to CAFs, activating the CGAS-STING-IFNB1 pathway in CAFs and promoting IFNB1 release. Consequently, this reinforces cancer cell resistance to platinum drugs. High STING expression in the tumor stroma was associated with a poor prognosis, while inhibiting STING expression enhanced ovarian cancer sensitivity. Understanding the relevance of the CGAS-STING pathway in CAFs for platinum resistance suggests targeting STING as a promising combination therapy for ovarian cancer, providing potential avenues for improved treatment outcomes.
Collapse
Affiliation(s)
- Jiale Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chenmian Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Yana Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Xiyu Pan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Ran Chu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Junyu Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zhongshao Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Chenchen Sheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Kai Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Ying Xue
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
6
|
Staropoli N, Ciliberto D, Luciano F, Napoli C, Costa M, Rossini G, Arbitrio M, Labanca C, Riillo C, Del Giudice T, Crispino A, Salvino A, Galvano A, Russo A, Tassone P, Tagliaferri P. The impact of PARP inhibitors in the whole scenario of ovarian cancer management: A systematic review and network meta-analysis. Crit Rev Oncol Hematol 2024; 193:104229. [PMID: 38065404 DOI: 10.1016/j.critrevonc.2023.104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Carboplatin is still the cornerstone of the first-line treatment in advanced Epithelial Ovarian Cancer (aEOC) management and the clinical response to platinum-derived agents remains the major predictor of long-term outcomes. PATIENT AND METHODS We aimed to identify the best treatment of the aEOC in terms of efficacy and safety, considering all treatment phases. A systematic literature search has been done to compare all treatments in aEOC population. Randomized trials with available survival and safety data published in the 2011-2022 timeframe were enclosed. Only trials reporting the BRCA or HRD (Homologous Recombination Deficiency) status were considered. DATA EXTRACTION AND SYNTHESIS A ranking of treatment schedules on the progression-free survival (PFS) endpoint was performed. The random-effect model was used to elaborate and extract data. The Network Meta-Analysis (NMA) by Bayesian model was performed by STATA v17. Data on PFS were extracted in terms of Hazard ratio with relative confidence intervals. RESULTS This NMA involved 18 trials for a total of 9105 patients. Within 12 treatment groups, we performed 3 different sensitivity analyses including "all comers" Intention to Treat (ITT) population, BRCA-mutated (BRCAm), and HRD subgroups, respectively. Considering the SUCRA-reported cumulative PFS probabilities, we showed that in the ITT population, the inferred best treatment was niraparib plus bevacizumab with a SUCRA of 96.7. In the BRCAm subgroup, the best SUCRA was for olaparib plus chemotherapy (96,9). The HRD population showed an inferred best treatment for niraparib plus bevacizumab (SUCRA 98,4). Moreover, we reported a cumulative summary of PARPi toxicity, in which different 3-4 grade toxicity profiles were observed, despite the PARPi "class effect" in terms of efficacy. CONCLUSIONS Considering all aEOC subgroups, the best therapeutical option was identified as PARPi plus chemotherapy and/or antiangiogenetic agents, suggesting the relevance of combinatory approaches based on molecular profile. This work underlines the potential value of "chemo-free" regimens to prolong the platinum-free interval (PFI).
Collapse
Affiliation(s)
- Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy; Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy
| | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Costa
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giacomo Rossini
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Catanzaro, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Teresa Del Giudice
- Oncology Unit, "De Lellis" Facility, AOU Renato Dulbecco, Catanzaro, Italy
| | - Antonella Crispino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Angela Salvino
- Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy; S.H.R.O., Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy; Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy; S.H.R.O., Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy; Medical and Translational Oncology Unit, AOU Renato Dulbecco, Catanzaro, Italy.
| |
Collapse
|
7
|
Jazwinska DE, Kulawiec DG, Zervantonakis IK. Cancer-mesothelial and cancer-macrophage interactions in the ovarian cancer microenvironment. Am J Physiol Cell Physiol 2023; 325:C721-C730. [PMID: 37545408 PMCID: PMC10635648 DOI: 10.1152/ajpcell.00461.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The metastatic ovarian cancer microenvironment is characterized by an intricate interaction network between cancer cells and host cells. This complex heterotypic cancer-host cell crosstalk results in an environment that promotes cancer cell metastasis and treatment resistance, leading to poor patient prognosis and survival. In this review, we focus on two host cell types found in the ovarian cancer microenvironment: mesothelial cells and tumor-associated macrophages. Mesothelial cells make up the protective lining of organs in the abdominal cavity. Cancer cells attach and invade through the mesothelial monolayer to form metastatic lesions. Crosstalk between mesothelial and cancer cells can contribute to metastatic progression and chemotherapy resistance. Tumor-associated macrophages are the most abundant immune cell type in the ovarian cancer microenvironment with heterogeneous subpopulations exhibiting protumor or antitumor functions. Macrophage reprogramming toward a protumor or antitumor state can be influenced by chemotherapy and communication with cancer cells, resulting in cancer cell invasion and treatment resistance. A better understanding of cancer-mesothelial and cancer-macrophage crosstalk will uncover biomarkers of metastatic progression and therapeutic targets to restore chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dorota E Jazwinska
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Diana G Kulawiec
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ioannis K Zervantonakis
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Xing Y, Liang X, Lv X, Cheng Y, Du J, Liu C, Yang Y. New insights into the role of circular RNAs in ovarian cancer. Pathol Res Pract 2022; 238:154073. [PMID: 36007396 DOI: 10.1016/j.prp.2022.154073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Ovarian cancer (OC) is one of the most aggressive tumors in women and has a poor prognosis and the highest mortality rate. Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs that have recently attracted interest in cancer research. Increasing evidence has demonstrated that circRNAs play an oncogenic or suppressive role in tumorigenesis and progression, and show tissue- or developmental-stage-specific expression. Due to high stability, conservation, abundance, and specificity, circRNAs are considered promising biomarkers for the diagnosis and prognosis of cancer. Herein, we have summarized the expression profiles of circRNAs in OC tissues, serums, and cell lines. Moreover, we discuss how circRNAs participate in the regulation of multiple biological processes in OC, including cell proliferation, apoptosis, migration, invasion, autophagy, epithelial-to-mesenchymal transition, glucose metabolism, angiogenesis, immune response, and chemotherapy resistance, by sponging microRNAs and interacting with proteins.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China.
| |
Collapse
|
9
|
Tan Y, Li J, Zhao G, Huang KC, Cardenas H, Wang Y, Matei D, Cheng JX. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat Commun 2022; 13:4554. [PMID: 35931676 PMCID: PMC9356138 DOI: 10.1038/s41467-022-32101-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Increased glycolysis is considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during therapeutic resistance development is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we find that cisplatin-resistant cells exhibit increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis, indicating reprogramming from glucose to FA dependent anabolic and energy metabolism. A metabolic index incorporating glucose derived anabolism and FA uptake correlates linearly to the level of cisplatin resistance in ovarian cancer (OC) cell lines and primary cells. The increased FA uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing beta-oxidation. Consequently, blocking beta-oxidation by a small molecule inhibitor combined with cisplatin or carboplatin synergistically suppresses OC proliferation in vitro and growth of patient-derived xenografts in vivo. Collectively, these findings support a rapid detection method of cisplatin-resistance at single cell level and a strategy for treating cisplatin-resistant tumors.
Collapse
Affiliation(s)
- Yuying Tan
- Biomedical Engineering, Boston University, Boston, MA, 02155, USA
| | - Junjie Li
- Electrical and Computer Engineering, Boston University, Boston, MA, 02155, USA.
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kai-Chih Huang
- Biomedical Engineering, Boston University, Boston, MA, 02155, USA
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Ji-Xin Cheng
- Biomedical Engineering, Boston University, Boston, MA, 02155, USA.
- Electrical and Computer Engineering, Boston University, Boston, MA, 02155, USA.
- Photonics Center, Boston University, Boston, MA, 02155, USA.
| |
Collapse
|
10
|
Zhang Y, Elechalawar CK, Yang W, Frickenstein AN, Asfa S, Fung KM, Murphy BN, Dwivedi SK, Rao G, Dey A, Wilhelm S, Bhattacharya R, Mukherjee P. Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2022; 56:79-95. [PMID: 36188120 PMCID: PMC9523457 DOI: 10.1016/j.mattod.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tumor microenvironment (TME) plays a key role in the poor prognosis of many cancers. However, there is a knowledge gap concerning how multicellular communication among the critical players within the TME contributes to such poor outcomes. Using epithelial ovarian cancer (EOC) as a model, we show how crosstalk among cancer cells (CC), cancer associated fibroblasts (CAF), and endothelial cells (EC) promotes EOC growth. We demonstrate here that co-culturing CC with CAF and EC promotes CC proliferation, migration, and invasion in vitro and that co-implantation of the three cell types facilitates tumor growth in vivo. We further demonstrate that disruption of this multicellular crosstalk using a gold nanoparticle (GNP) inhibits these pro-tumorigenic phenotypes in vitro as well as tumor growth in vivo. Mechanistically, GNP treatment reduces expression of several tumor-promoting cytokines and growth factors, resulting in inhibition of MAPK and PI3K-AKT activation and epithelial-mesenchymal transition - three key oncogenic signaling pathways responsible for the aggressiveness of EOC. The current work highlights the importance of multicellular crosstalk within the TME and its role for the aggressive nature of EOC, and demonstrates the disruption of these multicellular communications by self-therapeutic GNP, thus providing new avenues to interrogate the crosstalk and identify key perpetrators responsible for poor prognosis of this intractable malignancy.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Chandra Kumar Elechalawar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Sima Asfa
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Brennah N Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Shailendra K Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Geeta Rao
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Stefan Wilhelm
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
- Corresponding Author: 975 NE 10th Street, BRC-1409B, Oklahoma City, Oklahoma 73104, USA. . Phone: 405-271-1133. Fax: 405-271-2472
| |
Collapse
|
11
|
Cao D, Wang Y, Li W, Ji J, Guo J, Zhang D, Liu J. 3,4‑Dihydroxyacetophenone attenuates oxidative stress‑induced damage to HUVECs via regulation of the Nrf2/HO‑1 pathway. Mol Med Rep 2022; 25:199. [PMID: 35475506 PMCID: PMC9073850 DOI: 10.3892/mmr.2022.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
It has been reported that oxidative stress plays a prominent role in diabetic macrovascular diseases. 3,4-Dihydroxyacetophenone (3,4-DHAP) has been found to have a variety of biological activities. However, few studies have assessed the antioxidant capacity of 3,4-DHAP and the underlying mechanisms. Thus, the aim of the present study was to explore the effects of 3,4-DHAP on oxidative stress in human umbilical vein endothelial cells (HUVECs). HUVECs were pre-treated with 3,4-DHAP and then exposed to high glucose conditions. Cell viability and cytotoxicity were measured using an MTT assay. Reactive oxygen species (ROS) levels were measured using an inverted fluorescence microscope and a fluorescent enzyme labeling instrument. Protein expression levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), microtubule-associated protein 1A/1B-light chain 3 (LC3) and poly ADP-ribose polymerase-1 (PARP-1) were measured using western blotting, and mRNA expression of Nrf2 and HO-1 were measured through reverse transcription-quantitative PCR (RT-qPCR). Nrf2 nuclear translocation was evaluated using immunofluorescence analysis and autophagosomes were observed using transmission electron microscope (TEM). The results of the present study demonstrated that compared with the control group, cell viability of the high glucose group was reduced and cell cytotoxicity of the high glucose group was increased. ROS production in the high glucose group was clearly enhanced. In addition, high glucose upregulated Nrf2 and HO-1 protein and mRNA expression levels. Nuclear translocation of Nrf2 in the high glucose group was also increased. The formation of autophagosomes in the high glucose group was also higher than that in the control group. Furthermore, LC3-II/LC3-I and PARP-1 protein expression levels were increased after treatment with high glucose. However, compared to the high glucose group, 3,4-DHAP (10 µmol/l) significantly enhanced cell viability. 3,4-DHAP markedly decreased the production of ROS, increased Nrf2 and HO-1 protein and mRNA expression levels, and promoted nuclear translocation of Nrf2 in HUVECs. In addition, 3,4-DHAP promoted the formation of autophagosomes, and notably increased the protein expression levels of LC3-II/LC3-I and PARP-1. Moreover, it was determined that compared to the 3,4-DHAP group, treatment with 3,4-DHAP and ML385 enhanced cell viability, and decreased ROS production, Nrf2 and HO-1 protein and mRNA expression levels, nuclear translocation of Nrf2, and LC3-II/LC3-I and PARP-1 protein expression levels. Collectively, the results of the present study showed that 3,4-DHAP protected HUVECs against oxidative stress via regulation of the Nrf2/HO-1 pathway, by increasing autophagy and promoting DNA damage repair.
Collapse
Affiliation(s)
- Daihong Cao
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yunhan Wang
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wentao Li
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiafen Ji
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Juntang Guo
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Daijuan Zhang
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiangyue Liu
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
12
|
Shen X, Gu X, Ma R, Li X, Wang J. Identification of the Immune Signatures for Ovarian Cancer Based on the Tumor Immune Microenvironment Genes. Front Cell Dev Biol 2022; 10:772701. [PMID: 35372348 PMCID: PMC8974491 DOI: 10.3389/fcell.2022.772701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer (OV) is a deadly gynecological cancer. The tumor immune microenvironment (TIME) plays a pivotal role in OV development. However, the TIME of OV is not fully known. Therefore, we aimed to provide a comprehensive network of the TIME in OV. Gene expression data and clinical information from OV patients were obtained from the Cancer Genome Atlas Program (TCGA) database. Non-negative Matrix Factorization, NMFConsensus, and nearest template prediction algorithms were used to perform molecular clustering. The biological functions of differentially expressed genes (DEGs) were identified using Metascape, gene set enrichment analysis (GSEA), gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and tumor mutation burden were analyzed using Gistic 2.0, R package maftools, and TCGA mutations, respectively. Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data and CIBERSORT were utilized to elucidate the TIME. Moreover, external data from the International Cancer Genome Consortium (ICGC) and ArrayExpress databases were used to validate the signature. All 361 samples from the TCGA OV dataset were classified into Immune Class and non-Immune Class with immune signatures. By comparing the two classes, we identified 740 DEGs that accumulated in immune-related, cancer-related, inflammation-related biological functions and pathways. There were significant differences in the CNVs between the Immune and non-Immune Classes. The Immune Class was further divided into immune-activated and immune-suppressed subtypes. There was no significant difference in the top 20 genes in somatic SNPs among the three groups. In addition, the immune-activated subtype had significantly increased proportions of CD4 memory resting T cells, T cells, M1 macrophages, and M2 macrophages than the other two groups. The qRT-PCR results indicated that the mRNA expression levels of RYR2, FAT3, MDN1 and RYR1 were significantly down-regulated in OV compared with normal tissues. Moreover, the signatures of the TIME were validated using ICGC cohort and the ArrayExpress cohort. Our study clustered the OV patients into an immune-activated subtype, immune-suppressed subtype, and non-Immune Class and provided potential clues for further research on the molecular mechanisms and immunotherapy strategies of OV.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruiqiong Ma
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
| | - Xiaoping Li
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
| | - Jianliu Wang
- Department of Gynecology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Jianliu Wang,
| |
Collapse
|
13
|
Kapor S, Vukotić M, Subotički T, Đikić D, Mitrović Ajtić O, Radojković M, Čokić VP, Santibanez JF. Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. J Pers Med 2021; 11:jpm11111048. [PMID: 34834400 PMCID: PMC8619969 DOI: 10.3390/jpm11111048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.
Collapse
Affiliation(s)
- Sunčica Kapor
- Clinical Hospital Center “Dr Dragiša Mišović-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (M.R.)
| | - Milica Vukotić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Tijana Subotički
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Dragoslava Đikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Olivera Mitrović Ajtić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Milica Radojković
- Clinical Hospital Center “Dr Dragiša Mišović-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia; (S.K.); (M.R.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladan P. Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (M.V.); (T.S.); (D.Đ.); (O.M.A.); (V.P.Č.)
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1780, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
14
|
Kapor S, Vukotić M, Subotički T, Đikić D, Mitrović Ajtić O, Radojković M, Čokić VP, Santibanez JF. Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. J Pers Med 2021. [PMID: 34834400 DOI: 10.3390/jpm11111048.pmid:34834400;pmcid:pmc8619969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.
Collapse
Affiliation(s)
- Sunčica Kapor
- Clinical Hospital Center "Dr Dragiša Mišović-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Vukotić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Tijana Subotički
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Dragoslava Đikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Olivera Mitrović Ajtić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Milica Radojković
- Clinical Hospital Center "Dr Dragiša Mišović-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladan P Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago 8370854, Chile
| |
Collapse
|