1
|
Cao J, Feng B, Xv Y, Yu J, Cao S, Ma C. Continued attention: The role of exosomal long non-coding RNAs in tumors over the past three years. Int Immunopharmacol 2025; 144:113666. [PMID: 39577219 DOI: 10.1016/j.intimp.2024.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
This review summarizes the research on exosomal lncRNAs in tumors over the past three years. It highlights the significant roles of exosomal lncRNAs in modulating various cellular processes within the tumor microenvironment. Exosomal lncRNAs have been shown to influence the behavior of tumor cells, promoting proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, glycolysis, and contributing to tumor growth and metabolism. Moreover, exosomal lncRNAs have been found to interact with immune cells, such as modulating the functions of macrophages and influencing the overall immune response against tumors. Fibroblasts within the tumor microenvironment are also affected by exosomal lncRNAs, which can alter the extracellular matrix (ECM) and stromal composition. Notably, these exosomal lncRNAs hold promise in the diagnosis and treatment of tumors, offering potential biomarkers and therapeutic targets for improved clinical outcomes.
Collapse
Affiliation(s)
- Jiarui Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Bo Feng
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Yanchao Xv
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| | - Jiangfan Yu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Shasha Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou, Henan 450002, China.
| |
Collapse
|
2
|
Washington AM, Kostallari E. Extracellular Vesicles and Micro-RNAs in Liver Disease. Semin Liver Dis 2024. [PMID: 39626790 DOI: 10.1055/a-2494-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Progression of liver disease is dependent on intercellular signaling, including those mediated by extracellular vesicles (EVs). Within these EVs, microRNAs (miRNAs) are packaged to selectively silence gene expression in recipient cells for upregulating or downregulating a specific pathway. Injured hepatocytes secrete EV-associated miRNAs which can be taken up by liver sinusoidal endothelial cells, immune cells, hepatic stellate cells, and other cell types. In addition, these recipient cells will secrete their own EV-associated miRNAs to propagate a response throughout the tissue and the circulation. In this review, we comment on the implications of EV-miRNAs in the progression of alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, viral and parasitic infections, liver fibrosis, and liver malignancies. We summarize how circulating miRNAs can be used as biomarkers and the potential of utilizing EVs and miRNAs as therapeutic methods to treat liver disease.
Collapse
Affiliation(s)
- Alexander M Washington
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
4
|
El Alaa RSA, Al-Mannai W, Darwish N, Al-Mansoori L. Adipose-Derived Stromal Cells and Cancer-Associated Fibroblasts: Interactions and Implications in Tumor Progression. Int J Mol Sci 2024; 25:11558. [PMID: 39519109 PMCID: PMC11546911 DOI: 10.3390/ijms252111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Adipose-derived stromal cells (ASCs) and cancer-associated fibroblasts (CAFs) play pivotal roles in the tumor microenvironment (TME), significantly influencing cancer progression and metastasis. This review explores the plasticity of ASCs, which can transdifferentiate into CAFs under the influence of tumor-derived signals, thus enhancing their secretion of extracellular matrix components and pro-inflammatory cytokines that promote tumorigenesis. We discuss the critical process of the epithelial-to-mesenchymal transition (EMT) facilitated by ASCs and CAFs, highlighting its implications for increased invasiveness and therapeutic resistance in cancer cells. Key signaling pathways, including the transforming growth factor-β (TGF-β), Wnt/β-catenin, and Notch, are examined for their roles in regulating EMT and CAF activation. Furthermore, we address the impact of epigenetic modifications on ASC and CAF functionality, emphasizing recent advances in targeting these modifications to inhibit their pro-tumorigenic effects. This review also considers the metabolic reprogramming of ASCs and CAFs, which supports their tumor-promoting activities through enhanced glycolytic activity and lactate production. Finally, we outline potential therapeutic strategies aimed at disrupting the interactions between ASCs, CAFs, and tumor cells, including targeted inhibitors of key signaling pathways and innovative immunotherapy approaches. By understanding the complex roles of ASCs and CAFs within the TME, this review aims to identify new therapeutic opportunities that could improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar; (R.S.A.E.A.); (W.A.-M.); (N.D.)
| |
Collapse
|
5
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
6
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
8
|
Yang Y, Li H, Zheng D, Li X, Liu H. Immune microenvironment heterogeneity reveals distinct subtypes in neuroblastoma: insights into prognosis and therapeutic targets. Aging (Albany NY) 2023; 15:13345-13367. [PMID: 38019470 PMCID: PMC10713432 DOI: 10.18632/aging.205246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is a childhood cancer originating from immature nerve cells in the sympathetic nervous system. Current clinical and molecular subtyping methods for NB have limitations in providing accurate prognostic information and guiding treatment decisions. RESULTS To overcome these challenges, we explored the microenvironment of NB based on the knowledge-based functional gene expression signatures (Fges), which revealed heterogeneous subtypes. Consensus clustering of Fges activity scores identified three subtypes (Cluster 1, Cluster 2, and Cluster 3) that demonstrated significant differences in prognosis compared to mainstream subtypes. We assessed the immune infiltration, immunogenicity, CD8T cytotoxicity, and tumor purity of these subtypes, uncovering their distinct biological functions. Cluster 1 and Cluster 2 exhibited higher immunoreactivity, while Cluster 3 displayed higher tumor purity and poor prognosis. Gene ontology annotation and pathway analysis identified immune activation in Cluster 1, epithelial-mesenchymal transition (EMT) in Cluster 2, and cell cycle processes in Cluster 3. Notably, the impact of EMT activity on prognosis may vary across NB subtypes. A classification model using XGBoost accurately predicted subtypes in independent NB cohorts, with significant prognostic differences. GPR125, CDK4, and GREB1 emerged as potential therapeutic targets in Cluster 3. CD4K inhibitors showed subtype-specific responses, suggesting tailored treatment strategies. Single-cell analysis highlighted unfavorable clinical features in Cluster 3, including high-risk classification and reduced cytotoxicity. Suppressed interactions between monocytes, macrophages, and regulatory T cells were observed, affecting immune regulation and patient prognosis. CONCLUSION To summarize, we have identified a new independent prognostic factor in NB that underscores the significant correlation between tumor phenotype and immune contexture. These findings deepen our understanding of NB subtypes and immune cell interactions, paving the way for more effective treatment approaches.
Collapse
Affiliation(s)
- Yanlan Yang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, PR China
| | - Huamei Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China
| | - Donghui Zheng
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, PR China
| | - Xuemei Li
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, PR China
| | - Hongyan Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, PR China
| |
Collapse
|
9
|
You D, Wang Y, Xu J, Yang R, Wang W, Wang X, Cao X, Li Y, Yu L, Wang W, Shi Y, Zhang C, Yang H, He Y, Bian L. MiR-3529-3p from PDGF-BB-induced cancer-associated fibroblast-derived exosomes promotes the malignancy of oral squamous cell carcinoma. Discov Oncol 2023; 14:166. [PMID: 37668846 PMCID: PMC10480386 DOI: 10.1007/s12672-023-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023] Open
Abstract
AIMS This study aims to explore the role of exosomes from cancer-associated fibroblasts (CAFs) induced by PDGF-BB in promoting the malignancy of oral squamous cell carcinoma (OSCC) and provide new insight into the mechanism of OSCC progression and its treatment. MAIN METHODS Exosomes were extracted from human oral mucosa fibroblasts (hOMFs) and CAFs. Differentially expressed miRNAs of exosomes between hOMFs and CAFs were analysed using high-throughput sequencing and self-programmed R software. Cal-27, a human tongue squamous carcinoma cell line, was treated with exosomes. Differentially expressed miRNAs between clinical cancer tissues and adjacent tissues and between hOMF and CAF exosomes were verified by qRT‒PCR. The effect of miR-3529-3p on Cal-27 cells was clarified by overexpressing or knocking down miR-3529-3p in Cal-27 cells. Sample expression and differentially expressed miRNA expression were compared between cancer and paracarcinoma tissues. KEY FINDINGS We found that exosomes from CAFs (CAF-Exos) were internalized by tongue squamous carcinoma cells and promoted their proliferation, migration, invasion, and antiapoptotic effects. MiR-3529-3p was a significant differentially expressed miRNA between CAF-Exos and exosomes from hOMFs (hOMF-Exos). The overexpression of miR-3529-3p promoted proliferation, migration, and invasion and inhibited apoptosis of Cal-27 cells. SIGNIFICANCE This study explores the role of PDGF-BB-induced CAFs in promoting malignancy in OSCC. This study will provide new insight into the mechanism of OSCC progression and its treatment.
Collapse
Affiliation(s)
- Dingyun You
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
- The Yunnan Key Laboratory of Stomatological, Kunming Medical University, Kunming, 650106 Yunnan China
| | - Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan China
| | - Jianguo Xu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
- The Yunnan Key Laboratory of Stomatological, Kunming Medical University, Kunming, 650106 Yunnan China
| | - Rongqiang Yang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
- The Yunnan Key Laboratory of Stomatological, Kunming Medical University, Kunming, 650106 Yunnan China
| | - Weizhou Wang
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan China
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yiting Li
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
- The Yunnan Key Laboratory of Stomatological, Kunming Medical University, Kunming, 650106 Yunnan China
| | - Lifu Yu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
| | - Yanan Shi
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
| | - Changbin Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
| | - Hefeng Yang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
- The Yunnan Key Laboratory of Stomatological, Kunming Medical University, Kunming, 650106 Yunnan China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, 650106 Yunnan China
- The Yunnan Key Laboratory of Stomatological, Kunming Medical University, Kunming, 650106 Yunnan China
- Department of Dental Research, Qujing Medical College, Qujing, 655011 Yunnan China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan China
| |
Collapse
|
10
|
Song L, Yang J, Qin Z, Ou C, Luo R, Yang W, Wang L, Wang N, Ma S, Wu Q, Gong C. Multi-Targeted and On-Demand Non-Coding RNA Regulation Nanoplatform against Metastasis and Recurrence of Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207576. [PMID: 36905244 DOI: 10.1002/smll.202207576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Indexed: 06/08/2023]
Abstract
Dysregulation of microRNAs (miRs) is the hallmark of triple-negative breast cancer (TNBC), which is closely involved with its growth, metastasis, and recurrence. Dysregulated miRs are promising targets for TNBC therapy, however, targeted and accurate regulation of multiple disordered miRs in tumors is still a great challenge. Here, a multi-targeting and on-demand non-coding RNA regulation nanoplatform (MTOR) is reported to precisely regulate disordered miRs, leading to dramatical suppression of TNBC growth, metastasis, and recurrence. With the assistance of long blood circulation, ligands of urokinase-type plasminogen activator peptide and hyaluronan located in multi-functional shells enable MTOR to actively target TNBC cells and breast cancer stem cell-like cells (BrCSCs). After entering TNBC cells and BrCSCs, MTOR is subjected to lysosomal hyaluronidase-induced shell detachment, leading to an explosion of the TAT-enriched core, thereby enhancing nuclear targeting. Subsequently, MTOR could precisely and simultaneously downregulate microRNA-21 expression and upregulate microRNA-205 expression in TNBC. In subcutaneous xenograft, orthotopic xenograft, pulmonary metastasis, and recurrence TNBC mouse models, MTOR shows remarkably synergetic effects on the inhibition of tumor growth, metastasis, and recurrence due to its on-demand regulation of disordered miRs. This MTOR system opens a new avenue for on-demand regulation of disordered miRs against growth, metastasis, and recurrence of TNBC.
Collapse
Affiliation(s)
- Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zeyi Qin
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
11
|
Barrera LN, Ridley PM, Bermejo-Rodriguez C, Costello E, Perez-Mancera PA. The role of microRNAs in the modulation of cancer-associated fibroblasts activity during pancreatic cancer pathogenesis. J Physiol Biochem 2023; 79:193-204. [PMID: 35767180 PMCID: PMC9905185 DOI: 10.1007/s13105-022-00899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest of the common cancers. A major hallmark of PDAC is an abundant and dense fibrotic stroma, the result of a disproportionate deposition of extracellular matrix (ECM) proteins. Cancer-associated fibroblasts (CAFs) are the main mediators of PDAC desmoplasia. CAFs represent a heterogenous group of activated fibroblasts with different origins and activation mechanisms. microRNAs (miRNAs) are small non-coding RNAs with critical activity during tumour development and resistance to chemotherapy. Increasing evidence has revealed that miRNAs play a relevant role in the differentiation of normal fibroblasts into CAFs in PDAC. In this review, we discuss recent findings on the role of miRNAs in the activation of CAFs during the progression of PDAC and its response to therapy, as well as the potential role that PDAC-derived exosomal miRNAs may play in the activation of hepatic stellate cells (HSCs) and formation of liver metastasis. Since targeting of CAF activation may be a viable strategy for PDAC therapy, and miRNAs have emerged as potential therapeutic targets, understanding the biology underpinning miRNA-mediated tumour cell-CAF interactions is an important component in guiding rational approaches to treating this deadly disease.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Department of Molecular Cell Biology, School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 1JQ, UK
| | - P Matthew Ridley
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
12
|
Talayero VC, Vicente-Manzanares M. A primer on cancer-associated fibroblast mechanics and immunosuppressive ability. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:17-27. [PMID: 36937319 PMCID: PMC10017186 DOI: 10.37349/etat.2023.00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 02/25/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a major point of interest in modern oncology. Their interest resides in their ability to favor tumor growth without carrying genetic mutations. From a translational standpoint, they are potential therapeutic targets, particularly for hard-to-treat solid cancers. CAFs can be defined as non-tumor cells within the tumor microenvironment that have the morphological traits of fibroblasts, are negative for lineage-specific markers (e.g., leukocyte, endothelium), and enhance tumor progression in a multi-pronged manner. Two often-mentioned aspects of CAF biology are their ability to alter the mechanics and architecture of the tumor microenvironment, and also to drive local immunosuppression. These two aspects are the specific focus of this work, which also contains a brief summary of novel therapeutic interventions under study to normalize or eliminate CAFs from the tumor microenvironment.
Collapse
Affiliation(s)
- Vanessa C. Talayero
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain
- Correspondence: Miguel Vicente-Manzanares, Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
13
|
Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis 2022; 13:874. [PMID: 36244987 PMCID: PMC9573863 DOI: 10.1038/s41419-022-05320-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Despite advances in anticancer therapy, the prognosis of gastric cancer (GC) remains unsatisfactory. Research in recent years has shown that the malignant behavior of cancer is not only attributable to tumor cells but is partly mediated by the activity of the cancer stroma and controlled by various molecular networks in the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are one of the most abundant mesenchymal cell components of the stroma and extensively participate in the malignant development of GC malignancy. CAFs modulate the biological properties of tumor cells in multiple ways, including the secretion of various bioactive molecules that have effects through paracrine and autocrine signaling, the release of exosomes, and direct interactions, thereby affecting GC initiation and development. However, there is marked heterogeneity in the cellular origins, phenotypes, and functions of CAFs in the TME of GC. Furthermore, variations in factors, such as proteins, microRNAs, and lncRNAs, affect interactions between CAFs and GC cells, although, the potential molecular mechanisms are still poorly understood. In this review, we aim to describe the current knowledge of the cellular features and heterogeneity of CAFs and discuss how these factors are regulated in CAFs, with a focus on how they affect GC biology. This review provides mechanistic insight that could inform therapeutic strategies and improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Hui Sun
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xu Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Xin Wang
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China ,grid.8547.e0000 0001 0125 2443Institute of Pathology, Fudan University, 200032 Shanghai, China
| | - Midie Xu
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Weiqi Sheng
- grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, 200032 Shanghai, China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
14
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
15
|
Su J, Pang W, Zhang A, Li L, Yao W, Dai X. Exosomal miR-19a decreases insulin production by targeting Neurod1 in pancreatic cancer associated diabetes. Mol Biol Rep 2021; 49:1711-1720. [PMID: 34854011 DOI: 10.1007/s11033-021-06980-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND New onset diabetes mellitus demonstrates a roughly correlation with pancreatic cancer (PaC), which is unique in PaC and was named as PaC-induced DM, but the inner mechanism remains unclear. Exosomes mediate intercellular communication and bearing microRNAs might be direct constituent of effect in target cells. METHODS AND RESULTS The isolated exosomes from PaC cells were used to treat pancreatic β cells or the primary mice islets, and the glucose stimulated insulin secretions were measured. We validated the exosomal miR-19a from PaC cells to be an important mediator in the down regulation of insulin secretion by targeting Neurod1, the validated gene involved in insulin secretion, by using the quantitative real-time PCR, western blot, and promoter luciferase activity. The relative insulin, cAMP and Ca2+ expressions were also assayed to verify the inverse correlation between cancerous miR-19a and pancreatic islets Neurod1. CONCLUSIONS Our study indicated that signal changes between cancer cells and β cells via exosomes might be important in the pathogenesis of PaC-induced DM and supplemented the pathogenesis of PaC-induced DM and provide a possible access of PaC screening strategy.
Collapse
Affiliation(s)
- Jiaojiao Su
- Department of Gastroenterology, Lu'an Hospital of Anhui Medical University, Lu'an, China.,Department of Gastroenterology, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Wenjing Pang
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China. .,Department of Gastroenterology, Shanghai Jiaotong University School of Medicine Affiliating Shanghai 9th People's Hospital, 639, Zhi Zao Ju Road, Shanghai, 200001, China.
| | - Aisen Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical, Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Department of Gerontology, Jiangsu People's Hospital Affiliating to Nanjing Medical University, Nanjing, China
| | - Lei Li
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiaotong University, Shanghai, China.,Department of Gastroenterology, Shanghai Jiaotong University School of Medicine Affiliating Shanghai 9th People's Hospital, 639, Zhi Zao Ju Road, Shanghai, 200001, China
| | - Weiyan Yao
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine Affiliating Shanghai Ruijin Hospital, Shanghai, China
| | - Xin Dai
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine Affiliating Shanghai Ruijin Hospital, Shanghai, China.
| |
Collapse
|