1
|
Modestov A, Zolotovskaia M, Suntsova M, Zakharova G, Seryakov A, Jovcevska I, Mlakar J, Poddubskaya E, Moisseev A, Vykhodtsev G, Roumiantsev S, Sorokin M, Tkachev V, Simonov A, Buzdin A. Bioinformatic and clinical experimental assay uncovers resistance and susceptibility mechanisms of human glioblastomas to temozolomide and identifies new combined and individual survival biomarkers outperforming MGMT promoter methylation. Ther Adv Med Oncol 2024; 16:17588359241292269. [PMID: 39525666 PMCID: PMC11544758 DOI: 10.1177/17588359241292269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive and lethal central nervous system (CNS) tumor. The treatment strategy is mainly surgery and/or radiation therapy, both combined with adjuvant temozolomide (TMZ) chemotherapy. Historically, methylation of MGMT gene promoter is used as the major biomarker predicting individual tumor response to TMZ. Objectives This research aimed to analyze genes and molecular pathways of DNA repair as biomarkers for sensitivity to TMZ treatment in GBM using updated The Cancer Genome Atlas (TCGA) data and validate the results on experimental datasets. Methods Survival analysis of GBM patients under TMZ therapy and hazard ratio (HR) calculation were used to assess all putative biomarkers on World Health Organization CNS5 reclassified TCGA project collection of molecular profiles and experimental multicenter GBM patient cohort. Pathway activation levels were calculated for 38 DNA repair pathways. TMZ sensitivity pathway was reconstructed using a human interactome model built using pairwise interactions extracted from 51,672 human molecular pathways. Results We found that expression/activation levels of seven and six emerging gene/pathway biomarkers served as high-quality positive (HR < 0.61) and negative (HR > 1.63), respectively, patient survival biomarkers performing better than MGMT methylation. Positive survival biomarkers were enriched in the processes of ATM-dependent checkpoint activation and cell cycle arrest whereas negative-in excision DNA repair. We also built and characterized gene pathways which were informative for GBM patient survival following TMZ administration (HR 0.18-0.44, p < 0.0009; area under the curve 0.68-0.9). Conclusion In this study, a comprehensive analysis of the expression of 361 DNA repair genes and activation levels of 38 DNA repair pathways revealed 13 potential survival biomarkers with increased prognostic potential compared to MGMT methylation. We algorithmically reconstructed the TMZ sensitivity pathway with strong predictive capacity in GBM.
Collapse
Affiliation(s)
| | - Marianna Zolotovskaia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Maria Suntsova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Galina Zakharova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Ivana Jovcevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
| | | | | | | | | | | | - Anton Buzdin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Endocrinology Research Center, Dmitriya Ulyanova Str. 11, Moscow 117036, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow, Russia
- Oncobox LLC, Moscow 119991, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| |
Collapse
|
2
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
3
|
Raevskiy M, Sorokin M, Emelianova A, Zakharova G, Poddubskaya E, Zolotovskaia M, Buzdin A. Sample-Wise and Gene-Wise Comparisons Confirm a Greater Similarity of RNA and Protein Expression Data at the Level of Molecular Pathways and Suggest an Approach for the Data Quality Check in High-Throughput Expression Databases. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:737-746. [PMID: 38831509 DOI: 10.1134/s0006297924040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 06/05/2024]
Abstract
Identification of genes and molecular pathways with congruent profiles in the proteomic and transcriptomic datasets may result in the discovery of promising transcriptomic biomarkers that would be more relevant to phenotypic changes. In this study, we conducted comparative analysis of 943 paired RNA and proteomic profiles obtained for the same samples of seven human cancer types from The Cancer Genome Atlas (TCGA) and NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) [two major open human cancer proteomic and transcriptomic databases] that included 15,112 protein-coding genes and 1611 molecular pathways. Overall, our findings demonstrated statistically significant improvement of the congruence between RNA and proteomic profiles when performing analysis at the level of molecular pathways rather than at the level of individual gene products. Transition to the molecular pathway level of data analysis increased the correlation to 0.19-0.57 (Pearson) and 0.14-057 (Spearman), or 2-3-fold for some cancer types. Evaluating the gain of the correlation upon transition to the data analysis the pathway level can be used to refine the omics data by identifying outliers that can be excluded from the comparison of RNA and proteomic profiles. We suggest using sample- and gene-wise correlations for individual genes and molecular pathways as a measure of quality of RNA/protein paired molecular data. We also provide a database of human genes, molecular pathways, and samples related to the correlation between RNA and protein products to facilitate an exploration of new cancer transcriptomic biomarkers and molecular mechanisms at different levels of human gene expression.
Collapse
Affiliation(s)
- Mikhail Raevskiy
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Maxim Sorokin
- Omicsway Corp., Walnut, CA 91789, USA.
- Oncobox Ltd., Moscow, 121205, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aleksandra Emelianova
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Galina Zakharova
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Elena Poddubskaya
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Anton Buzdin
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
4
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
5
|
Huang H, Xie Y, Chen X, Zhang D, Zhang X, Deng Y, Huang Z, Bi H, Hu X, Yan X, Liang H, Lv Z, Sun X, Zhang M, Hu D, Hu F. Identification and validation of DNA methylation-driven gene PCDHB4 as a novel tumor suppressor for glioblastoma diagnosis and prognosis. Mol Carcinog 2023; 62:1832-1845. [PMID: 37560880 DOI: 10.1002/mc.23618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Aberrant DNA methylation is a critical regulator of gene expression in the development and progression of glioblastoma (GBM). However, the impact of methylation-driven gene PCDHB4 changes on GBM occurrence and progression remains unclear. Therefore, this study aimed to identify the PCDHB4 gene for early diagnosis and prognostic evaluation and clarify its functional role in GBM. Methylation-driven gene PCDHB4 was selected for GBM using the multi-omics integration method based on publicly available data sets. The diagnostic capabilities of PCDHB4 methylation and 5-hydroxymethylcytosines were validated in tissue and blood cell-free DNA (cfDNA) samples, respectively. Combined survival analysis of PCDHB4 methylation and immune infiltration cells evaluated the prognostic predictive performance of GBM patients. We identified that the PCDHB4 gene achieved high discriminative capabilities for GBM and normal tissues with an area under the curve value of 0.941. PCDHB4 hypermethylation was observed in cfDNA blood samples from GBM patients. Compared with GBM patients with PCDHB4 hypermethylation level, patients with PCDHB4 hypomethylation level had significantly poorer overall survival (p = 0.035). In addition, GBM patients with PCDHB4 hypermethylation and high infiltration of CD4+ T cell activation level had a favorable survival (p = 0.026). Moreover, we demonstrated that mRNA expression of PCDHB4 was downregulated in GBM tissues and upregulated in GBM cell lines with PCDHB4 demethylation, and PCDHB4 overexpression inhibited GBM cell proliferation and migration. In summary, we discovered a novel methylation-driven gene PCDHB4 for the diagnosis and prognosis of GBM and demonstrated that PCDHB4 is a tumor suppressor in vitro experiments.
Collapse
Affiliation(s)
- Hao Huang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yilin Xie
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xi Chen
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Dongdong Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xueying Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ying Deng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhicong Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Haoran Bi
- Department of Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xing Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xiangwei Yan
- Department of Oncology Radiotherapy, Hainan Cancer Hospital, Haikou, Hainan, People's Republic of China
| | - Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Zhonghua Lv
- Department of Neurosurgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Kantelhardt S. New Strategies in Diagnosis and Treatments for Brain Tumors. Cancers (Basel) 2023; 15:cancers15112879. [PMID: 37296841 DOI: 10.3390/cancers15112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
In general, cancer is one of the most frequent causes of death [...].
Collapse
Affiliation(s)
- Sven Kantelhardt
- Department of Neurosurgery, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249 Berlin, Germany
| |
Collapse
|
7
|
Yang C, Jiang Y, Hu F, Li Q, Qi B. Implications of CRNDE in prognosis, tumor immunity, and therapeutic sensitivity in low grade glioma patients. Cancer Cell Int 2023; 23:93. [PMID: 37194105 DOI: 10.1186/s12935-023-02930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Colorectal tumor differentially expressed (CRNDE) is specifically expressed in human brains and is the most highly expressed lncRNA in gliomas. Nevertheless, its implications in low grade glioma (LGG) are still indistinct. This study presented systematic analyses of CRNDE in LGG biology. METHODS We retrospectively retrieved TCGA, CGGC and GSE16011 LGG cohorts. Survival analysis was conducted for evaluating the prognostic significance of CRNDE in LGG. A CRNDE-based nomogram was established, and its predictive performance was verified. Signaling pathways underlying CRNDE were analyzed through ssGSEA and GSEA approaches. The abundance of immune cells and activity of cancer-immunity cycle were estimated with ssGSEA approach. Immune checkpoints, HLAs, chemokines, and immunotherapeutic response indicators (TIDE, and TMB) was quantified. U251 and SW1088 cells were transfected with specific shRNAs of CRNDE, and flow cytometry (apoptosis) and western blot (β-catenin and Wnt5a) assays were conducted. RESULTS Up-regulated CRNDE was found in LGG, and was linked to unfavorable clinical outcomes. The CRNDE-based nomogram enabled to accurately predict patients' prognosis. High CRNDE expression was linked to more genomic variations, activity of tumorigenic pathways, tumor immunity (increase in infiltration of immune cells, expression of immune checkpoints, HLAs and chemokines, and cancer-immunity cycle), and therapeutic sensitivity. CRNDE knockdown mitigated malignant phenotypes of LGG cells. CONCLUSIONS Our study determined CRNDE as a novel predictor for patient prognosis, tumor immunity and therapeutic response in LGG. Assessment of CRNDE expression is a promising approach for predicting the therapeutic benefits of LGG patients.
Collapse
Affiliation(s)
- Chen Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, Fujian, China
| | - Yingchuan Jiang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fan Hu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiuping Li
- Department of Neurosurgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, Fujian, China.
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Biao Qi
- Department of Neurosurgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, Fujian, China.
| |
Collapse
|
8
|
Pan-cancer antagonistic inhibition pattern of ATM-driven G2/M checkpoint pathway vs other DNA repair pathways. DNA Repair (Amst) 2023; 123:103448. [PMID: 36657260 DOI: 10.1016/j.dnarep.2023.103448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.
Collapse
|
9
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Mokhtari M. Contribution of CRNDE lncRNA in the development of cancer and the underlying mechanisms. Pathol Res Pract 2023; 244:154387. [PMID: 36893710 DOI: 10.1016/j.prp.2023.154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Colorectal Neoplasia Differentially Expressed (CRNDE) is an lncRNA with crucial roles in cancer development. It is located on chromosome 16 on the opposite strand to the adjacent IRX5 gene, implying the presence of a shared bidirectional promoter for these two genes. Expression of CRNDE has been assessed in a diverse array of hematological malignancies and solid tumors, representing its potential as a therapeutic target in these conditions. This lncRNA has a regulatory effect on activity of several pathways and axes that are involved in the regulation of cell apoptosis, immune responses and tumorigenesis. The current review is an updated review about the role of CRNDE in the development of cancers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zhu X, Chen D, Sun Y, Yang S, Wang W, Liu B, Gao P, Li X, Wu L, Ma S, Lin W, Ma J, Yan D. LncRNA WEE2-AS1 is a diagnostic biomarker that predicts poor prognoses in patients with glioma. BMC Cancer 2023; 23:120. [PMID: 36747161 PMCID: PMC9901081 DOI: 10.1186/s12885-023-10594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glioma is characterized by high morbidity, high mortality, and poor prognosis. Despite tremendous advances in the treatment of glioma, the prognosis of patients with glioma is still unsatisfactory. There is an urgent need to discover novel molecular markers that effectively predict prognosis in patients with glioma. The investigation of the role of WEE2-AS1 in various tumors is an emerging research field, but the biological function and prognostic value of WEE2-AS1 in glioma have rarely been reported. This study aimed to assess the value of WEE2-AS1 as a potential prognostic marker of glioma. METHODS Gene expression (RNA-Seq) data of patients with glioma were extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. The Wilcoxon rank sum test was used to analyze the expression of WEE2-AS1 in the cells and tissues of glioma. The Kruskal-Wallis rank sum test, Wilcoxon rank sum test, and logistic regression were used to evaluate the relationship between clinical variables and expression of WEE2-AS1. Cox regression analysis and the Kaplan-Meier method were used to evaluate the prognostic factors in glioma. A nomogram based on Cox multivariate analysis was used to predict the impact of WEE2-AS1 on glioma prognosis. Gene Set Enrichment Analysis (GSEA) was used to identify key WEE2-AS1-associated signaling pathways. Spearman's rank correlation was used to elucidate the association between WEE2-AS1 expression and immune cell infiltration levels. RESULTS We found that WEE2-AS1 was overexpressed in a variety of cancers, including glioma. High expression of WEE2-AS1 was associated with glioma progression. We determined that the expression of WEE2-AS1 might be an independent risk factor for the survival and prognosis of patients with glioma. We further observed that the mechanism of WEE2-AS1-mediated tumorigenesis involved neuroactive ligand-receptor interaction, cell cycle, and the infiltration of immune cells into the glioma microenvironment. CONCLUSION These findings demonstrate that WEE2-AS1 is a promising biomarker for the diagnosis and prognosis of patients with glioma. An increased understanding of its effects on the regulation of cell growth may lead to the development of clinical applications that improve the prognostic status of patients with glioma.
Collapse
Affiliation(s)
- Xuqiang Zhu
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Di Chen
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Yiyu Sun
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, School of Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Shuo Yang
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Weiguang Wang
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Bing Liu
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Peng Gao
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Xueyuan Li
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Lixin Wu
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Siqi Ma
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Wenyang Lin
- grid.412633.10000 0004 1799 0733Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Jiwei Ma
- grid.493088.e0000 0004 1757 7279Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100 Henan Shanghai, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Zakharova G, Efimov V, Raevskiy M, Rumiantsev P, Gudkov A, Belogurova-Ovchinnikova O, Sorokin M, Buzdin A. Reclassification of TCGA Diffuse Glioma Profiles Linked to Transcriptomic, Epigenetic, Genomic and Clinical Data, According to the 2021 WHO CNS Tumor Classification. Int J Mol Sci 2022; 24:ijms24010157. [PMID: 36613601 PMCID: PMC9820617 DOI: 10.3390/ijms24010157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
In 2021, the fifth edition of the WHO classification of tumors of the central nervous system (WHO CNS5) was published. Molecular features of tumors were directly incorporated into the diagnostic decision tree, thus affecting both the typing and staging of the tumor. It has changed the traditional approach, based solely on histopathological classification. The Cancer Genome Atlas project (TCGA) is one of the main sources of molecular information about gliomas, including clinically annotated transcriptomic and genomic profiles. Although TCGA itself has played a pivotal role in developing the WHO CNS5 classification, its proprietary databases still retain outdated diagnoses which frequently appear incorrect and misleading according to the WHO CNS5 standards. We aimed to define the up-to-date annotations for gliomas from TCGA's database that other scientists can use in their research. Based on WHO CNS5 guidelines, we developed an algorithm for the reclassification of TCGA glioma samples by molecular features. We updated tumor type and diagnosis for 828 out of a total of 1122 TCGA glioma cases, after which available transcriptomic and methylation data showed clustering features more consistent with the updated grouping. We also observed better stratification by overall survival for the updated diagnoses, yet WHO grade 3 IDH-mutant oligodendrogliomas and astrocytomas are still indistinguishable. We also detected altered performance in the previous diagnostic transcriptomic molecular biomarkers (expression of SPRY1, CRNDE and FREM2 genes and FREM2 molecular pathway) and prognostic gene signature (FN1, ITGA5, OSMR, and NGFR) after reclassification. Thus, we conclude that further efforts are needed to reconsider glioma molecular biomarkers.
Collapse
Affiliation(s)
- Galina Zakharova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Victor Efimov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | - Pavel Rumiantsev
- Multidisciplinary Medical Center, Group of Clinics, 194044 Saint-Petersburg, Russia
| | - Alexander Gudkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| | | | - Maksim Sorokin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
- Correspondence:
| |
Collapse
|
12
|
Identification of Prognostic Signature of Necroptosis-Related lncRNAs and Molecular Subtypes in Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3440586. [PMID: 36110575 PMCID: PMC9468935 DOI: 10.1155/2022/3440586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Background In tumor progression and epigenetic regulation, long non-coding RNA (lncRNA) and necroptosis are crucial regulators. However, in glioma microenvironment, the role of necroptosis-related lncRNAs (NRLs) remains unknown. Method In this study, the RNA-seq and clinical annotation of glioma patients were analyzed using the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. To investigate prognosis and tumor microenvironment of NRLs in gliomas, we conducted a prediction model based on the training cohort. The accuracy of the model was verified in the verification cohort. Results A signature composed of 13 NRLs was identified, and all glioma patients were divided into two groups. We found that each group has unique survival outcomes, biological behaviors, and immune infiltrating status. The necroptosis-related lncRNA signature (NRLS) model was found to be an independent risk factor in multivariate Cox analysis. Immunosuppressive microenvironment was positively correlated with the high-risk group. Due to significantly different IC50 between risk groups, NRLS could be used as a guide for chemotherapeutic treatment. Further, the entire cohort was divided into two clusters depending on NRLs. Consensus clustering method and the risk scoring system were basically similar. Survival probability was higher in Cluster 2, while Cluster 1 has stronger immunologic infiltration. Conclusion The predictive signature could be a prognostic factor independently and serve to detect the role of NRLs in glioma immunotherapy response.
Collapse
|
13
|
Zolotovskaia MA, Kovalenko MA, Tkachev VS, Simonov AM, Sorokin MI, Kim E, Kuzmin DV, Karademir-Yilmaz B, Buzdin AA. Next-Generation Grade and Survival Expression Biomarkers of Human Gliomas Based on Algorithmically Reconstructed Molecular Pathways. Int J Mol Sci 2022; 23:7330. [PMID: 35806337 PMCID: PMC9266372 DOI: 10.3390/ijms23137330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression and gene-centric pathway activation was tested as a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated), including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical). We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7 identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent class of new-generation diagnostic and prognostic biomarkers for gliomas.
Collapse
Affiliation(s)
- Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | - Max A. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | | | - Alexander M. Simonov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
- Omicsway Corp., Walnut, CA 91789, USA;
| | - Maxim I. Sorokin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
- Omicsway Corp., Walnut, CA 91789, USA;
- Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
| | - Ella Kim
- Clinic for Neurosurgery, Laboratory of Experimental Neurooncology, Johannes Gutenberg University Medical Centre, Langenbeckstrasse 1, 55124 Mainz, Germany;
| | - Denis V. Kuzmin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (M.A.K.); (A.M.S.); (M.I.S.); (D.V.K.)
| | - Betul Karademir-Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey;
| | - Anton A. Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
14
|
Liu Y, Shi Y, Wu M, Liu J, Wu H, Xu C, Chen L. Hypoxia-induced polypoid giant cancer cells in glioma promote the transformation of tumor-associated macrophages to a tumor-supportive phenotype. CNS Neurosci Ther 2022; 28:1326-1338. [PMID: 35762580 PMCID: PMC9344088 DOI: 10.1111/cns.13892] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Polypoid giant cancer cells (PGCCs) represent a unique subgroup of stem‐like cells, acting as a critical factor in promoting the recurrence of various solid tumors. The effect of PGCCs on the tumor malignancy of glioma and its immune microenvironment remains unclear. Methods Bioinformatic analysis was performed to investigate the relationship between M2 tumor‐associated macrophages (TAMs) infiltration and survival of glioblastoma (GBM) patients. The spatial location of M2 TAMs in GBM was also investigated using the Ivy Glioblastoma Atlas Project (Ivy GAP) database. PGCCs were quantified in glioma of different grades. CoCl2 was used to induce PGCCs in cultures of A172 cells. PGCCs, and their progeny cells in cultures were further evaluated for morphological features, tumorsphere formation, and TAMs activation. Results The magnitude of M2 TAMs infiltration is significantly correlated with poor survival in GBM patients. M2 TAMs were enriched in the perinecrotic zone (PNZ) of GBM and positively correlated with hypoxic levels. Increased PGCCs were detected in glioma specimens of higher grades. CoCl2 induced hypoxia and the transformation of A172 cultures into PGCCs, producing the progeny cells, PGCCs‐Dau, through asymmetric division. PGCCs and PGCCs‐Dau possessed tumor stem cell‐like features, while PGCCs‐Dau enhanced the polarization of TAMs into an M2 phenotype with relevance to immunosuppression and malignancy in GBM. Conclusions PGCCs promote malignancy and immune‐suppressive microenvironment in GBM. PGCCs or their progeny cells may be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yuyang Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Ying Shi
- School of Medicine, University of Electronic science and Technology of China, Chengdu, China.,Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Mengwan Wu
- School of Medicine, University of Electronic science and Technology of China, Chengdu, China.,Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Jialin Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hong Wu
- Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Chuan Xu
- Integrative Cancer Center& Cancer Clinical Research Center, Sichuan Cancer Hospital, Chengdu, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Konovalov N, Timonin S, Asyutin D, Raevskiy M, Sorokin M, Buzdin A, Kaprovoy S. Transcriptomic Portraits and Molecular Pathway Activation Features of Adult Spinal Intramedullary Astrocytomas. Front Oncol 2022; 12:837570. [PMID: 35387112 PMCID: PMC8978956 DOI: 10.3389/fonc.2022.837570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we report 31 spinal intramedullary astrocytoma (SIA) RNA sequencing (RNA-seq) profiles for 25 adult patients with documented clinical annotations. To our knowledge, this is the first clinically annotated RNA-seq dataset of spinal astrocytomas derived from the intradural intramedullary compartment. We compared these tumor profiles with the previous healthy central nervous system (CNS) RNA-seq data for spinal cord and brain and identified SIA-specific gene sets and molecular pathways. Our findings suggest a trend for SIA-upregulated pathways governing interactions with the immune cells and downregulated pathways for the neuronal functioning in the context of normal CNS activity. In two patient tumor biosamples, we identified diagnostic KIAA1549-BRAF fusion oncogenes, and we also found 16 new SIA-associated fusion transcripts. In addition, we bioinformatically simulated activities of targeted cancer drugs in SIA samples and predicted that several tyrosine kinase inhibitory drugs and thalidomide analogs could be potentially effective as second-line treatment agents to aid in the prevention of SIA recurrence and progression.
Collapse
Affiliation(s)
| | | | | | - Mikhail Raevskiy
- Omicsway Corp., Walnut, CA, United States
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Sorokin
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA, United States
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | | |
Collapse
|
16
|
Ammari S, Sallé de Chou R, Balleyguier C, Chouzenoux E, Touat M, Quillent A, Dumont S, Bockel S, Garcia GCTE, Elhaik M, Francois B, Borget V, Lassau N, Khettab M, Assi T. A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI. Diagnostics (Basel) 2021; 11:diagnostics11112043. [PMID: 34829395 PMCID: PMC8624566 DOI: 10.3390/diagnostics11112043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning (ML) algorithms for survival prediction of GBM patient. We identified a radiomic signature on a training-set composed of data from the 2019 BraTS challenge (210 patients) from MRI retrieved at diagnosis. Then, using this signature along with the age of the patients for training classification models, we obtained on test-sets AUCs of 0.85, 0.74 and 0.58 (0.92, 0.88 and 0.75 on the training-sets) for survival at 9-, 12- and 15-months, respectively. This signature was then validated on an independent cohort of 116 GBM patients with confirmed disease relapse for the prediction of patients surviving less or more than the median OS of 22 months. Our model insured an AUC of 0.71 (0.65 on train). The Kaplan–Meier method showed significant OS difference between groups (log-rank p = 0.05). These results suggest that radiomic signatures may improve survival outcome predictions in GBM thus creating a solid clinical tool for tailoring therapy in this population.
Collapse
Affiliation(s)
- Samy Ammari
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
- Department of Imaging, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | - Raoul Sallé de Chou
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
- Correspondence:
| | - Corinne Balleyguier
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
- Department of Imaging, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | - Emilie Chouzenoux
- Centre de Vision Numérique, OPIS, CentraleSupélec, Inria, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (E.C.); (A.Q.)
| | - Mehdi Touat
- Service de Neurologie 2-Mazarin, AP-HP Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 75013 Paris, France;
- Institut du Cerveau et de la Moelle Epinière, CNRS, UMR S 1127, Inserm, Sorbonne Université, 75013 Paris, France
| | - Arnaud Quillent
- Centre de Vision Numérique, OPIS, CentraleSupélec, Inria, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (E.C.); (A.Q.)
| | - Sarah Dumont
- Department of oncology, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (S.D.); (T.A.)
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | | | - Mickael Elhaik
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
| | - Bidault Francois
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
- Department of Imaging, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | - Valentin Borget
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
| | - Nathalie Lassau
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France; (S.A.); (C.B.); (M.E.); (B.F.); (V.B.); (N.L.)
- Department of Imaging, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France;
| | - Mohamed Khettab
- Medical Oncology Unit, CHU de La Réunion, Université de La Réunion, 97410 Saint Pierre, France;
| | - Tarek Assi
- Department of oncology, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (S.D.); (T.A.)
| |
Collapse
|