1
|
Chen ZG, Xie YT, Yang C, Xiao T, Chen SY, Wu JH, Guo QN, Gao L. M2 macrophages secrete CCL20 to regulate iron metabolism and promote daunorubicin resistance in AML cells. Life Sci 2025; 361:123297. [PMID: 39645162 DOI: 10.1016/j.lfs.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Chemotherapy resistance is a significant clinical challenge in the treatment of leukemia. M2 macrophages have been identified as key contributors to the development of chemotherapy resistance in cancer, yet the precise mechanisms by which macrophages regulate this resistance remain elusive. Our study has identified CCL20 as a pivotal factor in the promotion of chemoresistance in AML cells by M2 macrophages. The chemotherapeutic agent daunorubicin induces a marked increase in ROS and lipid peroxidation levels within AML cells. This is accompanied by the inhibition of the SLC7A11/GCL/GPX4 signaling axis, elevated levels of intracellular free iron, disrupted iron metabolism, and consequent mitochondrial damage, ultimately leading to ferroptosis. Notably, CCL20 enhances the ability of AML cells to maintain iron homeostasis by upregulating SLC7A11 protein activity, mitigating mitochondrial damage, and inhibiting ferroptosis, thereby contributing to chemotherapy resistance. Furthermore, in vivo experiments demonstrated that blocking CCL20 effectively restores the sensitivity of AML cells to daunorubicin chemotherapy. Collectively, these findings underscore the complex interplay between M2 macrophages, CCL20 signaling, and chemotherapy resistance in AML, highlighting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Zhi-Gang Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Yu-Tong Xie
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Tong Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Si-Yu Chen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Jun-Hong Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Qiao-Nan Guo
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China 400037.
| |
Collapse
|
2
|
Sun J, Corradini S, Azab F, Shokeen M, Muz B, Miari KE, Maksimos M, Diedrich C, Asare O, Alhallak K, Park C, Lubben B, Chen Y, Adebayo O, Bash H, Kelley S, Fiala M, Bender DE, Zhou H, Wang S, Vij R, Williams MTS, Azab AK. IL-10R inhibition reprograms tumor-associated macrophages and reverses drug resistance in multiple myeloma. Leukemia 2024; 38:2355-2365. [PMID: 39215060 PMCID: PMC11518999 DOI: 10.1038/s41375-024-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Multiple myeloma (MM) is the cancer of plasma cells within the bone marrow and remains incurable. Tumor-associated macrophages (TAMs) within the tumor microenvironment often display a pro-tumor phenotype and correlate with tumor proliferation, survival, and therapy resistance. IL-10 is a key immunosuppressive cytokine that leads to recruitment and development of TAMs. In this study, we investigated the role of IL-10 in MM TAM development as well as the therapeutic application of IL-10/IL-10R/STAT3 signaling inhibition. We demonstrated that IL-10 is overexpressed in MM BM and mediates M2-like polarization of TAMs in patient BM, 3D co-cultures in vitro, and mouse models. In turn, TAMs promote MM proliferation and drug resistance, both in vitro and in vivo. Moreover, inhibition of IL-10/IL-10R/STAT3 axis using a blocking IL-10R monoclonal antibody and STAT3 protein degrader/PROTAC prevented M2 polarization of TAMs and the consequent TAM-induced proliferation of MM, and re-sensitized MM to therapy, in vitro and in vivo. Therefore, our findings suggest that inhibition of IL-10/IL-10R/STAT3 axis is a novel therapeutic strategy with monotherapy efficacy and can be further combined with current anti-MM therapy, such as immunomodulatory drugs, to overcome drug resistance. Future investigation is warranted to evaluate the potential of such therapy in MM patients.
Collapse
Affiliation(s)
- Jennifer Sun
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
| | - Stefan Corradini
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Feda Azab
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Shokeen
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mina Maksimos
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Camila Diedrich
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Obed Asare
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kinan Alhallak
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA
| | - Chaelee Park
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Berit Lubben
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yixuan Chen
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ola Adebayo
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Hannah Bash
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sarah Kelley
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Diane E Bender
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Haibin Zhou
- Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, USA
| | - Shaomeng Wang
- Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ravi Vij
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
- Department of Medicine, Oncology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, MO, USA.
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Ohe R. Mechanisms of lymphoma-stromal interactions focusing on tumor-associated macrophages, fibroblastic reticular cells, and follicular dendritic cells. J Clin Exp Hematop 2024; 64:166-176. [PMID: 39085126 PMCID: PMC11528246 DOI: 10.3960/jslrt.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
The interaction between cancer cells and stromal cells contributes to the pathogenesis of various types of tumors in the tumor microenvironment (TME). Macrophages (Mφs), a type of stromal cell, are transformed into tumor-associated Mφs (TAMs) after integrating within solid tumors. TAMs are known to interact with cancer cells and induce tumor progression. Thus, the cancer cells construct an organ-specific TME, which is advantageous for the survival of cancer cells in the TME. The density of stromal cells is known to be involved in the prognosis of patients with lymphomas. A higher density of stromal cells increases the interaction between lymphoma cells and stromal cells, promoting lymphoma progression. This review focuses on stromal cells in lymphoid tissues, such as TAMs, fibroblastic reticular cells (FRCs), and follicular dendritic cells (FDCs). This review also focuses on the signal transduction caused by stromal cells and tumor cells via factors such as cytokines. IL-10 and other cytokines secreted by TAMs activate the JAK/STAT pathway in lymphoma cells of follicular lymphoma, classic Hodgkin lymphoma, and diffuse large B-cell lymphoma. FRCs play roles in tumor promotion in follicular lymphoma and diffuse large B-cell lymphoma. Cytokines/chemokines secreted by FDCs play essential roles in lymphoma cell survival, proliferation, invasion, and migration in follicular lymphoma. In conclusion, TAMs, FRCs, and FDCs play crucial roles in the TME of lymphomas. Furthermore, histological spatial analysis revealing the positional relationship of each cell could highlight lymphoma-stromal interactions.
Collapse
Affiliation(s)
- Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
4
|
Tomarchio V, Rigacci L. Role of CD68 in the tumor immune microenvironment in Hodgkin's lymphoma. Expert Rev Clin Immunol 2024; 20:811-819. [PMID: 38087440 DOI: 10.1080/1744666x.2023.2294943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 07/26/2024]
Abstract
INTRODUCTION Despite the high rate of cure in classical Hodgkin Lymphoma (cHL), some patients experienced a refractory disease, sometimes, hardly curable. In the pathogenesis of cHL, Reed Sternberg Cells (HRSC), which represent only less than 1% of tumor cells, are not the only protagonist; in fact, the role of tumor microenvironment is essential in survival, tumor growth, and progression of the disease due to the interaction between immune cells, chemokines, and cytokines. AREAS COVERED In this review, the current significant literature was discussed. Many studies demonstrated the role of macrophages CD68+ as 'protumor', especially in supporting HRSC survival through cell-to-cell and paracrine interactions. Increased infiltration of CD68 macrophages correlate with a poor prognosis. This review examines the interaction between CD68 macrophages, HRSC and cHL milieu, and the consequent clinical impact, providing an up-do-date portrait of these immune cells with possible translational and therapeutic applications. EXPERT OPINION We can suggest that a high baseline CD68 macrophages in cHL patients could contribute to the identification of high-risk patients and help clinicians to choose the best treatment, in the context of refractory disease. A macrophage target strategy in association with chemotherapy or biological therapy could represent a promising approach for future studies and investigations.
Collapse
Affiliation(s)
| | - Luigi Rigacci
- Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
- Research Unit of Hematology Department of Medicine and Surgery, Università Campus Bio-Medico via Alvario del Portillo, Roma, Italy
| |
Collapse
|
5
|
Hollands CG, Boyd AL, Zhao X, Reid JC, Henly C, ElRafie A, Boylan D, Broder E, Kalau O, Johnson P, Mark A, McNicol J, Xenocostas A, Berg T, Foley R, Trus M, Leber B, Garcia-Horton A, Campbell C, Bhatia M. Identification of cells of leukemic stem cell origin with non-canonical regenerative properties. Cell Rep Med 2024; 5:101485. [PMID: 38582086 PMCID: PMC11031376 DOI: 10.1016/j.xcrm.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024]
Abstract
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.
Collapse
Affiliation(s)
- Cameron G Hollands
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Xueli Zhao
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Charisa Henly
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Amro ElRafie
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Boylan
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emily Broder
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Olivia Kalau
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paige Johnson
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Alyssa Mark
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jamie McNicol
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada
| | - Tobias Berg
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ronan Foley
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Trus
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian Leber
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alejandro Garcia-Horton
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Clinton Campbell
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mickie Bhatia
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Spertini C, Bénéchet AP, Birch F, Bellotti A, Román-Trufero M, Arber C, Auner HW, Mitchell RA, Spertini O, Smirnova T. Macrophage migration inhibitory factor blockade reprograms macrophages and disrupts prosurvival signaling in acute myeloid leukemia. Cell Death Discov 2024; 10:157. [PMID: 38548753 PMCID: PMC10978870 DOI: 10.1038/s41420-024-01924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The malignant microenvironment plays a major role in the development of resistance to therapies and the occurrence of relapses in acute myeloid leukemia (AML). We previously showed that interactions of AML blasts with bone marrow macrophages (MΦ) shift their polarization towards a protumoral (M2-like) phenotype, promoting drug resistance; we demonstrated that inhibiting the colony-stimulating factor-1 receptor (CSF1R) repolarizes MΦ towards an antitumoral (M1-like) phenotype and that other factors may be involved. We investigated here macrophage migration inhibitory factor (MIF) as a target in AML blast survival and protumoral interactions with MΦ. We show that pharmacologically inhibiting MIF secreted by AML blasts results in their apoptosis. However, this effect is abrogated when blasts are co-cultured in close contact with M2-like MΦ. We next demonstrate that pharmacological inhibition of MIF secreted by MΦ, in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF), efficiently reprograms MΦ to an M1-like phenotype that triggers apoptosis of interacting blasts. Furthermore, contact with reprogrammed MΦ relieves blast resistance to venetoclax and midostaurin acquired in contact with CD163+ protumoral MΦ. Using intravital imaging in mice, we also show that treatment with MIF inhibitor 4-IPP and GM-CSF profoundly affects the tumor microenvironment in vivo: it strikingly inhibits tumor vasculature, reduces protumoral MΦ, and slows down leukemia progression. Thus, our data demonstrate that MIF plays a crucial role in AML MΦ M2-like protumoral phenotype that can be reversed by inhibiting its activity and suggest the therapeutic targeting of MIF as an avenue towards improved AML treatment outcomes.
Collapse
Affiliation(s)
- Caroline Spertini
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Alexandre P Bénéchet
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Flora Birch
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Mónica Román-Trufero
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Caroline Arber
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
- Service of Immuno-oncology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Holger W Auner
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Robert A Mitchell
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, 40202, USA
| | - Olivier Spertini
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Tatiana Smirnova
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland.
| |
Collapse
|
7
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
8
|
Rodrigues WF, Miguel CB, de Abreu MCM, Neto JM, Oliveira CJF. Potential Associations between Vascular Biology and Hodgkin's Lymphoma: An Overview. Cancers (Basel) 2023; 15:5299. [PMID: 37958472 PMCID: PMC10649902 DOI: 10.3390/cancers15215299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a lymphatic neoplasm typically found in the cervical lymph nodes. The disease is multifactorial, and in recent years, the relationships between various vascular molecules have been explored in the field of vascular biology. The connection between vascular biology and HL is intricate and the roles of several pathways remain unclear. This review summarizes the cellular and molecular relationships between vascular biology and HL. Proteins associated with various functions in vascular biology, including cytokines (TNF-α, IL-1, IL-13, and IL-21), chemokines (CXCL10, CXCL12, and CCL21), adhesion molecules (ELAM-1/VCAM-1), and growth factors (BDNF/NT-3, platelet-derived growth factor receptor-α), have been linked to tumor activity. Notable tumor activities include the induction of paracrine activation of NF-kB-dependent pathways, upregulation of adhesion molecule regulation, genome amplification, and effective loss of antigen presentation mediated by MHC-II. Preclinical study models, primarily those using cell culture, have been optimized for HL. Animal models, particularly mice, are also used as alternatives to complex biological systems, with studies primarily focusing on the physiopathogenic evaluation of the disease. These biomolecules warrant further study because they may shed light on obscure pathways and serve as targets for prevention and/or treatment interventions.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Camila Botelho Miguel
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | | | - Jamil Miguel Neto
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Carlo José Freire Oliveira
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
| |
Collapse
|
9
|
Parisi L, Bianchi MG, Ghezzi B, Maurizi E, Macaluso GM, Bussolati O, Lumetti S. Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro. J Dent Sci 2023; 18:1630-1637. [PMID: 37799917 PMCID: PMC10547954 DOI: 10.1016/j.jds.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Background/purpose Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application.
Collapse
Affiliation(s)
- Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Massimiliano Giovanni Bianchi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Microbiome Research Hub, Università di Parma, Parma, Italy
| | - Benedetta Ghezzi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- IMEM-CNR, Parma, Italy
| | - Eleonora Maurizi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- Centre for Regenerative Medicine “S.Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Maria Macaluso
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- IMEM-CNR, Parma, Italy
| | - Ovidio Bussolati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Microbiome Research Hub, Università di Parma, Parma, Italy
| | - Simone Lumetti
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
- Centro Universitario di Odontoiatria, Università di Parma, Parma, Italy
- IMEM-CNR, Parma, Italy
| |
Collapse
|
10
|
Fang WC, Du JS, Su YC, Chiu LW, Yang TT. M2 Polarization May Contribute to Formation of Granulomatous Dermatitis in Progression of Myelodysplastic Syndrome to Acute Myeloid Leukemia. Dermatol Pract Concept 2023; 13:dpc.1304a241. [PMID: 37992346 PMCID: PMC10656156 DOI: 10.5826/dpc.1304a241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 11/24/2023] Open
Affiliation(s)
- Wei-Cheng Fang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yue-Chiu Su
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Wen Chiu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Cencini E, Sicuranza A, Fabbri A, Marzano C, Pacelli P, Caroni F, Raspadori D, Bocchia M. The prognostic role of gene polymorphisms in patients with indolent non-Hodgkin lymphomas and mantle-cell lymphoma receiving bendamustine and rituximab: results of the 5-year follow-up study. Leuk Lymphoma 2023; 64:1634-1642. [PMID: 37424258 DOI: 10.1080/10428194.2023.2232490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
The variability in disease outcome for indolent non-Hodgkin lymphomas (iNHL) and mantle-cell lymphoma (MCL) could be related to single nucleotide polymorphisms (SNPs) in genes that affect immune and inflammatory response. We investigated SNPs that could have a prognostic role for patients receiving bendamustine and rituximab (BR). All samples were genotyped for the IL-2 (rs2069762), IL-10 (rs1800890, rs10494879), VEGFA (rs3025039), IL-8 (rs4073), CFH (rs1065489) and MTHFR (rs1801131) SNPs by allelic discrimination assays using TaqMan SNP Genotyping Assays. We report a long-term follow-up analysis of 79 iNHL and MCL patients that received BR. Overall response rate was 97.5% (CR rate 70.9%). After a median follow-up of 63 months, median PFS and OS were not reached. We report a significant association between SNP in IL-2 (rs2069762) and reduced PFS and OS (p<.0001). We suggest a role for cytokine SNPs in disease outcome, while SNPs seem not related to long-term toxicity or secondary malignancies.
Collapse
Affiliation(s)
- Emanuele Cencini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Anna Sicuranza
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Cristina Marzano
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Paola Pacelli
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Federico Caroni
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Donatella Raspadori
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| | - Monica Bocchia
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese & University of Siena, Siena, Italy
| |
Collapse
|
12
|
Kosche C, Jaishankar D, Cosgrove C, Ramesh P, Hong S, Li L, Shivde RS, Bhuva D, White BEP, Munir SS, Zhang H, Lu KQ, Choi JN, Le Poole IC. Skin Infiltrate Composition as a Telling Measure of Responses to Checkpoint Inhibitors. JID INNOVATIONS 2023; 3:100190. [PMID: 37554516 PMCID: PMC10405096 DOI: 10.1016/j.xjidi.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Checkpoint inhibitors treat a variety of tumor types with significant benefits. Unfortunately, these therapies come with diverse adverse events. Skin rash is observed early into treatment and might serve as an indicator of downstream responses to therapy. We studied the cellular composition of cutaneous eruptions and whether their contribution varies with the treatment applied. Skin samples from 18 patients with cancer and 11 controls were evaluated by mono- and multiplex imaging, quantification, and statistical analysis. T cells were the prime contributors to skin rash, with T cells and macrophages interacting and proliferating on site. Among T cell subsets examined, type 1 and 17 T cells were relatively increased among inflammatory skin infiltrates. A combination of increased cytotoxic T cell content and decreased macrophage abundance was associated with dual checkpoint inhibition over PD1 inhibition alone. Importantly, responders significantly separated from nonresponders by greater CD68+ macrophage and either CD11c+ antigen-presenting cell or CD4+ T cell abundance in skin rash. The microenvironment promoted epidermal proliferation and thickening as well. The combination of checkpoint inhibitors used affects the development and composition of skin infiltrates, whereas the combined abundance of two cell types in cutaneous eruptions aligns with responses to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Cory Kosche
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dinesh Jaishankar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Prathyaya Ramesh
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Suyeon Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Li
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rohan S. Shivde
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Deven Bhuva
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bethany E. Perez White
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabah S. Munir
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kurt Q. Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer N. Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
13
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
14
|
Turbatu A, Dobrea C, Stoian M, Barta CT, Halcu G, Birceanu A, Bordea AM, Ghimici CG, Oprea MM, Neacșu LD, Lupu AR, Coliță A. Tumor microenvironment in Hodgkin lymphoma: novel prognostic factors for assessing disease evolution. J Med Life 2023; 16:1201-1210. [PMID: 38024830 PMCID: PMC10652678 DOI: 10.25122/jml-2023-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023] Open
Abstract
Hodgkin lymphoma (HL) has become one of the most curable hematological neoplasia. Clinical and biological factors remain the main pillars guiding therapeutic strategies in HL. Recent studies have improved our understanding of the phenotype, the characteristics of histogenesis, and other possible mechanisms of lymphomagenesis, including the role of Epstein-Barr virus (EBV) infection. Tumor cells manipulate the microenvironment, allowing them to develop their malignant phenotype and evade the attack of the host's immune response so that the interaction between tumor cells and the reactive microenvironment determines not only the histological features but also the clinical-pathological characteristics and prognosis of these patients - essential for the development of future therapies targeting various other cellular components of the tumor microenvironment. This article aimed to evaluate the characteristics of the tumor microenvironment and malignant cells using histopathology and immunohistochemistry (IHC) techniques to highlight the association of EBV and to study the expression of characteristic antigens in malignant and non-malignant cells within the tumor mass (overexpression of BCL2 (B-cell lymphoma 2) in malignant cells, presence of PD1 (Programmed cell death Protein 1) on T lymphocytes, CD68+ macrophages in the tumor microenvironment, and presence of EGFR (epidermal growth factor receptor). The analysis of the data collected in this paper highlights several key parameters with prognostic value and statistical significance: the EBV infection at diagnosis, its association with low-intensity BCL2(+), the presence of CD68 with rosette formation, and the identification of specific vascularization patterns. The development of prognostic systems that take into account the integration of biological prognostic markers seems essential for a better risk stratification.
Collapse
Affiliation(s)
- Andrei Turbatu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | - Camelia Dobrea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- OncoTeam Diagnostic Laboratory, Royal Hospital Clinic, Bucharest, Romania
| | - Marilena Stoian
- Clinic of Internal Medicine, Dr. I. Cantacuzino Clinical Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristian Tudor Barta
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Georgian Halcu
- Clinic of Pathology, Colțea Clinical Hospital, Bucharest, Romania
- PathoTeam Diagnostic Laboratory, Bucharest, Romania
| | | | - Ana-Maria Bordea
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | | | | | - Livia Doria Neacșu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | - Anca-Roxana Lupu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | - Andrei Coliță
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| |
Collapse
|
15
|
Cencini E, Sicuranza A, Ciofini S, Fabbri A, Bocchia M, Gozzetti A. Tumor-Associated Macrophages in Multiple Myeloma: Key Role in Disease Biology and Potential Therapeutic Implications. Curr Oncol 2023; 30:6111-6133. [PMID: 37504315 PMCID: PMC10378698 DOI: 10.3390/curroncol30070455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple myeloma (MM) is characterized by multiple relapse and, despite the introduction of novel therapies, the disease becomes ultimately drug-resistant. The tumor microenvironment (TME) within the bone marrow niche includes dendritic cells, T-cytotoxic, T-helper, reactive B-lymphoid cells and macrophages, with a complex cross-talk between these cells and the MM tumor cells. Tumor-associated macrophages (TAM) have an important role in the MM pathogenesis, since they could promote plasma cells proliferation and angiogenesis, further supporting MM immune evasion and progression. TAM are polarized towards M1 (classically activated, antitumor activity) and M2 (alternatively activated, pro-tumor activity) subtypes. Many studies demonstrated a correlation between TAM, disease progression, drug-resistance and reduced survival in lymphoproliferative neoplasms, including MM. MM plasma cells in vitro could favor an M2 TAM polarization. Moreover, a possible correlation between the pro-tumor effect of M2 TAM and a reduced sensitivity to proteasome inhibitors and immunomodulatory drugs was hypothesized. Several clinical studies confirmed CD68/CD163 double-positive M2 TAM were associated with increased microvessel density, chemoresistance and reduced survival, independently of the MM stage. This review provided an overview of the biology and clinical relevance of TAM in MM, as well as a comprehensive evaluation of a potential TAM-targeted immunotherapy.
Collapse
Affiliation(s)
- Emanuele Cencini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Anna Sicuranza
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Sara Ciofini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Monica Bocchia
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Alessandro Gozzetti
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| |
Collapse
|
16
|
Georgoulis V, Papoudou-Bai A, Makis A, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Classic Hodgkin Lymphoma: Prognostic and Therapeutic Implications. BIOLOGY 2023; 12:862. [PMID: 37372147 PMCID: PMC10294989 DOI: 10.3390/biology12060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Classic Hodgkin lymphoma (cHL) is a lymphoid neoplasm composed of rare neoplastic Hodgkin and Reed-Sternberg (HRS) cells surrounded by a reactive tumor microenvironment (TME) with suppressive properties against anti-tumor immunity. TME is mainly composed of T cells (CD4 helper, CD8 cytotoxic and regulatory) and tumor-associated macrophages (TAMs), but the impact of these cells on the natural course of the disease is not absolutely understood. TME contributes to the immune evasion of neoplastic HRS cells through the production of various cytokines and/or the aberrant expression of immune checkpoint molecules in ways that have not been fully understood yet. Herein, we present a comprehensive review of findings regarding the cellular components and the molecular features of the immune TME in cHL, its correlation with treatment response and prognosis, as well as the potential targeting of the TME with novel therapies. Among all cells, macrophages appear to be a most appealing target for immunomodulatory therapies, based on their functional plasticity and antitumor potency.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandra Papoudou-Bai
- Department of Pathology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Alexandros Makis
- Department of Child Health, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 000 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece;
| |
Collapse
|
17
|
Reale A, Krutzke L, Cadamuro M, Vitiello A, von Einem J, Kochanek S, Palù G, Parolin C, Calistri A. Human Monocytes Are Suitable Carriers for the Delivery of Oncolytic Herpes Simplex Virus Type 1 In Vitro and in a Chicken Embryo Chorioallantoic Membrane Model of Cancer. Int J Mol Sci 2023; 24:ijms24119255. [PMID: 37298206 DOI: 10.3390/ijms24119255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Oncolytic viruses (OVs) are promising therapeutics for tumors with a poor prognosis. An OV based on herpes simplex virus type 1 (oHSV-1), talimogene laherparepvec (T-VEC), has been recently approved by the Food and Drug Administration (FDA) and by the European Medicines Agency (EMA) for the treatment of unresectable melanoma. T-VEC, like most OVs, is administered via intratumoral injection, underlining the unresolved problem of the systemic delivery of the oncolytic agent for the treatment of metastases and deep-seated tumors. To address this drawback, cells with a tropism for tumors can be loaded ex vivo with OVs and used as carriers for systemic oncolytic virotherapy. Here, we evaluated human monocytes as carrier cells for a prototype oHSV-1 with a similar genetic backbone as T-VEC. Many tumors specifically recruit monocytes from the bloodstream, and autologous monocytes can be obtained from peripheral blood. We demonstrate here that oHSV-1-loaded primary human monocytes migrated in vitro towards epithelial cancer cells of different origin. Moreover, human monocytic leukemia cells selectively delivered oHSV-1 to human head-and-neck xenograft tumors grown on the chorioallantoic membrane (CAM) of fertilized chicken eggs after intravascular injection. Thus, our work shows that monocytes are promising carriers for the delivery of oHSV-1s in vivo, deserving further investigation in animal models.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Lea Krutzke
- Department of Gene Therapy, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University Medical Center, 89081 Ulm, Germany
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| |
Collapse
|
18
|
Wu M, Zhang S, Chi C, Zhu H, Ma H, Liu L, Shi Q, Li D, Ju X. 1,5-AG suppresses pro-inflammatory polarization of macrophages and promotes the survival of B-ALL in vitro by upregulating CXCL14. Mol Immunol 2023; 158:91-102. [PMID: 37178520 DOI: 10.1016/j.molimm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is one of the most common malignancies in children. Despite advances in treatment, the role of the tumor microenvironment in B-ALL remains poorly understood. Among the key components of the immune microenvironment, macrophages play a critical role in the progression of the disease. However, recent research has suggested that abnormal metabolites may influence the function of macrophages, altering the immune microenvironment and promoting tumor growth. Our previous non-targeted metabolomic detection revealed that the metabolite 1,5-anhydroglucitol (1,5-AG) level in the peripheral blood of children newly diagnosed with B-ALL was significantly elevated. Except for its direct influence on leukemia cells, the effect of 1,5-AG on macrophages is still unclear. Herein, we demonstrated new potential therapeutic targets by focusing on the effect of 1,5-AG on macrophages. We used polarization-induced macrophages to determine how 1,5-AG acted on M1-like polarization and screened out the target gene CXCL14 via transcriptome sequencing. Furthermore, we constructed CXCL14 knocked-down macrophages and a macrophage-leukemia cell coculture model to validate the interaction between macrophages and leukemia cells. We discovered that 1,5-AG upregulated the CXCL14 expression, thereby inhibiting M1-like polarization. CXCL14 knockdown restored the M1-like polarization of macrophages and induced leukemia cells apoptosis in the coculture model. Our findings offer new possibilities for the genetic engineering of human macrophages to rehabilitate their immune activity against B-ALL in cancer immunotherapy.
Collapse
Affiliation(s)
- Min Wu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cheng Chi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huasu Zhu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huixian Ma
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China; Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
19
|
Yang LF, Zhang ZB, Wang L. S100A9 promotes tumor-associated macrophage for M2 macrophage polarization to drive human liver cancer progression: An in vitro study. Kaohsiung J Med Sci 2023; 39:345-353. [PMID: 36807724 DOI: 10.1002/kjm2.12651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/23/2023] Open
Abstract
Tumor-associated macrophages (TAMs) and M2 macrophage polarization have been documented for their implication in various malignancies, but their implication in liver cancer remains to be determined. This study is intended to explore the effect of S100A9 regulated TAMs and macrophage polarization in liver cancer progression. THP-1 cells were induced to differentiate into M1 and M2 macrophages, which were then cultured in liver cancer cell conditioned culture medium before the M1 and M2 macrophages were identified by measuring biomarkers using real-time polymerase chain reaction. The differential expressed genes in macrophages in Gene Expression Omnibus (GEO) databases were screened. S100A9 overexpression and knockdown plasmid were transfected into macrophages to determine the effect of S100A9 on M2 macrophage polarization of TAMs and on proliferation ability of liver cancer cells. The proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) abilities of liver cancer co-cultured with TAMs. M1 and M2 macrophages were successfully induced and liver cancer cell conditioned culture medium can increase polarization of macrophages into M2 macrophages, in which elevated expression of S100A9 was detected. Data in GEO database showed that tumor microenvironment (TME) upregulated S1000A9 expression. Suppression on S1000A9 can significantly suppress M2 macrophage polarization. TAM can provide the necessary microenvironment for liver cancer cells, HepG2 and MHCC97H by increasing cell proliferation, migration, and invasion ability, while suppression on S1000A9 can reverse this expression pattern. Suppression on S100A9 expression can regulate M2 macrophage polarization of TAMs to suppress the progression of liver cancer.
Collapse
Affiliation(s)
- Lan-Fang Yang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Zhi-Bo Zhang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Liang Wang
- Department of Hepatopancreas Biliary, Hernia Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Hepatopancreas Biliary, Hernia Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
20
|
Review on Bortezomib Resistance in Multiple Myeloma and Potential Role of Emerging Technologies. Pharmaceuticals (Basel) 2023; 16:ph16010111. [PMID: 36678608 PMCID: PMC9864669 DOI: 10.3390/ph16010111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma is a hematological cancer type. For its treatment, Bortezomib has been widely used. However, drug resistance to this effective chemotherapeutic has been developed for various reasons. 2D cell cultures and animal models have failed to understand the MM disease and Bortezomib resistance. It is therefore essential to utilize new technologies to reveal a complete molecular profile of the disease. In this review, we in-depth examined the possible molecular mechanisms that cause Bortezomib resistance and specifically addressed MM and Bortezomib resistance. Moreover, we also included the use of nanoparticles, 3D culture methods, microfluidics, and organ-on-chip devices in multiple myeloma. We also discussed whether the emerging technology offers the necessary tools to understand and prevent Bortezomib resistance in multiple myeloma. Despite the ongoing research activities on MM, the related studies cannot provide a complete summary of MM. Nanoparticle and 3D culturing have been frequently used to understand MM disease and Bortezomib resistance. However, the number of microfluidic devices for this application is insufficient. By combining siRNA/miRNA technologies with microfluidic devices, a complete molecular genetic profile of MM disease could be revealed. Microfluidic chips should be used clinically in personal therapy and point-of-care applications. At least with Bortezomib microneedles, it could be ensured that MM patients can go through the treatment process more painlessly. This way, MM can be switched to the curable cancer type list, and Bortezomib can be targeted for its treatment with fewer side effects.
Collapse
|
21
|
Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023; 88:138-156. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.
Collapse
Affiliation(s)
- Shubhraneel Saha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravikiran Mahadevappa
- Department of Biotechnology, School of Science, Gandhi Institute of Technology and Management, Deemed to be University, Bengaluru, Karnataka 562163, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
22
|
Magalhães-Gama F, Alves-Hanna FS, Araújo ND, Barros MS, Silva FS, Catão CLS, Moraes JS, Freitas IC, Tarragô AM, Malheiro A, Teixeira-Carvalho A, Costa AG. The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Front Immunol 2022; 13:1071188. [PMID: 36532078 PMCID: PMC9751477 DOI: 10.3389/fimmu.2022.1071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The leukemic microenvironment has a high diversity of immune cells that are phenotypically and functionally distinct. However, our understanding of the biology, immunology, and clinical implications underlying these cells remains poorly investigated. Among the resident immune cells that can infiltrate the leukemic microenvironment are myeloid cells, which correspond to a heterogeneous cell group of the innate immune system. They encompass populations of neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs). These cells can be abundant in different tissues and, in the leukemic microenvironment, are associated with the clinical outcome of the patient, acting dichotomously to contribute to leukemic progression or stimulate antitumor immune responses. In this review, we detail the current evidence and the many mechanisms that indicate that the activation of different myeloid cell populations may contribute to immunosuppression, survival, or metastatic dissemination, as well as in immunosurveillance and stimulation of specific cytotoxic responses. Furthermore, we broadly discuss the interactions of tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) and MDSCs in the leukemic microenvironment. Finally, we provide new perspectives on the potential of myeloid cell subpopulations as predictive biomarkers of therapeutical response, as well as potential targets in the chemoimmunotherapy of leukemias due to their dual Yin-Yang roles in leukemia.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Mateus Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Júlia Santos Moraes
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Izabela Cabral Freitas
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
23
|
Wang SSY, Chng WJ, Liu H, de Mel S. Tumor-Associated Macrophages and Related Myelomonocytic Cells in the Tumor Microenvironment of Multiple Myeloma. Cancers (Basel) 2022; 14:5654. [PMID: 36428745 PMCID: PMC9688291 DOI: 10.3390/cancers14225654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is the second-most common hematologic malignancy and remains incurable despite potent plasma cell directed therapeutics. The tumor microenvironment (TME) is a key player in the pathogenesis and progression of MM and is an active focus of research with a view to targeting immune dysregulation. Tumor-associated macrophages (TAM), myeloid derived suppressor cells (MDSC), and dendritic cells (DC) are known to drive progression and treatment resistance in many cancers. They have also been shown to promote MM progression and immune suppression in vitro, and there is growing evidence of their impact on clinical outcomes. The heterogeneity and functional characteristics of myelomonocytic cells in MM are being unraveled through high-dimensional immune profiling techniques. We are also beginning to understand how they may affect and be modulated by current and future MM therapeutics. In this review, we provide an overview of the biology and clinical relevance of TAMs, MDSCs, and DCs in the MM TME. We also highlight key areas to be addressed in future research as well as our perspectives on how the myelomonocytic compartment of the TME may influence therapeutic strategies of the future.
Collapse
Affiliation(s)
- Samuel S. Y. Wang
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
- Cancer Science Institute, National University of Singapore, 14 Medical Dr, #12-01 Centre for Translational Medicine, Singapore 117599, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Immunology Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| |
Collapse
|
24
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
25
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Immunophenotypic Characteristics of Bone Marrow Microenvironment Cellular Composition at the Biochemical Progression of Multiple Myeloma. J Clin Med 2022; 11:jcm11133722. [PMID: 35807007 PMCID: PMC9267252 DOI: 10.3390/jcm11133722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) relapses are inevitable in the majority of patients, and in addition to genetic changes in the MM clone, the immune profile of the bone marrow (BM) plays a key role in this process. Biochemical progression or relapse (BR) precedes clinical relapse in a significant proportion of patients with MM. In the present study, we used flow cytometry to assess the cellular composition of the BM microenvironment in MM patients with confirmed BR. Fifteen distinct cells subsets in the BM were evaluated with the panel of antibodies used routinely for MRD monitoring in MM in 52 patients with MM (MRD-negative n = 20, BR n = 20, and clinically relapsed MM, RMM n = 12). The median percentage of MM cells detected in BR patients was 0.90% versus not detectable in MRD-negative patients and of 3.0% in RMM cohort. Compared to the MRD-negative group, BR status was associated with an increase in the percentage of lymphoid subpopulations, including memory B cells (p = 0.003), CD27+T cells (p = 0.002), and NK/NKT cells (p < 0.001). Moreover, a decrease in B-cell precursors (p < 0.001) and neutrophils (p = 0.006) was observed. There were no significant differences in the composition of the BM cell subpopulations between the BR and RMM groups. Our results indicate the involvement of B-, T-, and NK cells in the process of losing immune surveillance over the MM clone that leads to relapse. It can be speculated that similar studies of a larger cohort of BR patients can potentially identify a group of patients for which an early treatment intervention would be beneficial.
Collapse
|
27
|
Liang X, Zhang M, Zhang Z, Tan S, Li Y, Zhong Y, Shao Y, Kong Y, Yang Y, Li S, Xu J, Li Z, Zhu X. Nomogram model and risk score predicting overall survival and guiding clinical decision in patients with Hodgkin's lymphoma: an observational study using SEER population-based data. BMJ Open 2022; 12:e055524. [PMID: 35672070 PMCID: PMC9174788 DOI: 10.1136/bmjopen-2021-055524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION This study developed a prognostic nomogram of Hodgkin lymphoma (HL) for purpose of discussing independent risk factors for HL patients with Surveillance, Epidemiology and End Results (SEER) database. METHODS We collected data of HL patients from 2010 to 2015 from the SEER database and divided it into two cohorts: the training and the verification cohort. Then the univariate and the multivariate Cox regression analyses were conducted in the training, the verification as well as the total cohort, after which the intersection of variables with statistical significance was taken as independent risk factors to establish the nomogram. The predictive ability of the nomogram was validated by the Concordance Index. Additionally, the calibration curve and receiver operating characteristic curve were implemented to evaluate the accuracy and discrimination. Finally, we obtained 1-year, 3-year and 5-year survival rates of HL patients. RESULTS 10 912 patients were eligible for the study. We discovered that Derived American Joint Committee on Cancer (AJCC) Stage Group, lymphoma subtype, radiotherapy and chemotherapy were four independent risk factors affecting the prognosis of HL patients. The 1-year, 3-year and 5-year survival rates for high-risk patients were 85.4%, 79.9% and 76.0%, respectively. It was confirmed that patients with stage I or II had a better prognosis. Radiotherapy and chemotherapy had a positive impact on HL outcomes. However, patients with lymphocyte-depleted HL were of poor prognosis. CONCLUSIONS The nomogram we constructed could better predict the prognosis of patients with HL. Patients with HL had good long-term outcomes but novel therapies are still in need for fewer complications.
Collapse
Affiliation(s)
- Xiangping Liang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Mingtao Zhang
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zherui Zhang
- School of Laboratory and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuzhen Tan
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yingqi Li
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yueyuan Zhong
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yingqi Shao
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yi Kong
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yue Yang
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Shang Li
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, People's Republic of China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
28
|
Xiang C, Wu J, Yu L. Construction of three-gene-based prognostic signature and analysis of immune cells infiltration in children and young adults with B-acute lymphoblastic leukemia. Mol Genet Genomic Med 2022; 10:e1964. [PMID: 35603962 PMCID: PMC9266608 DOI: 10.1002/mgg3.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Although B‐acute lymphoblastic leukemia (B‐ALL) patients' survival has been improved dramatically, some cases still relapse. This study aimed to explore the prognosis‐related novel differentially expressed genes (DEGs) for predicting the overall survival (OS) of children and young adults (CAYAs) with B‐ALL and analyze the immune‐related factors contributing to poor prognosis. Methods GSE48558 and GSE79533 from Gene Expression Omnibus (GEO) and clinical sample information and mRNA‐seq from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were retrieved. Prognosis‐related key genes were enrolled to build a Cox proportional model using multivariate Cox regression. Five‐year OS of patients, clinical characteristic relevance and clinical independence were assessed based on the model. The mRNA levels of prognosis‐related genes were validated in our samples and the difference of immune cells composition between high‐risk and low‐risk patients were compared. Results One hundred and twelve DEGs between normal B cells and B‐ALL cells were identified based on GSE datasets. They were mainly participated in protein binding and HIF‐1 signaling pathway. One hundred and eighty‐nine clinical samples were enrolled in the study, both Kaplan–Meier (KM) analysis and univariate Cox regression analysis showed that CYBB, BCL2A1, IFI30, and EFNB1 were associated with prognosis, CYBB, BCL2A1, and EFNB1 were used to construct prognostic risk model. Moreover, compared to clinical indicators, the three‐gene signature was an independent prognostic factor for CAYAs with B‐ALL. Finally, the mRNA levels of CYBB, BCL2A1, and EFNB1 were significantly lower in B‐ALL group as compared to controls. The high‐risk group had a significantly higher percentage of infiltrated immune cells. Conclusion We constructed a novel three‐gene signature with independent prognostic factor for predicting 5‐year OS of CAYAs with B‐ALL. Additionally, we discovered the difference of immune cells composition between high‐risk and low‐risk groups. This study may help to customize individual treatment and improve prognosis of CAYAs with B‐ALL.
Collapse
Affiliation(s)
- Chunli Xiang
- Department of Hematology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Liang Yu
- Department of Hematology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23095242. [PMID: 35563634 PMCID: PMC9104275 DOI: 10.3390/ijms23095242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.
Collapse
|
30
|
Gozzetti A, Ciofini S, Sicuranza A, Pacelli P, Raspadori D, Cencini E, Tocci D, Bocchia M. Drug resistance and minimal residual disease in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:171-183. [PMID: 35582527 PMCID: PMC8992600 DOI: 10.20517/cdr.2021.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/12/2022]
Abstract
Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. New drugs have been introduced and complete responses are frequently seen. However, the majority of MM patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock protein induction for proteasome inhibitors; downregulation of CRBN expression; deregulation of IRF4 expression; mutation of CRBN, IKZF1, and IKZF3 for immunomodulatory drugs and decreased target expression; complement protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5. Sustained MRD negativity is related to prolonged survival, and it is evaluated in all recent clinical trials as a surrogate of drug efficacy.
Collapse
Affiliation(s)
- Alessandro Gozzetti
- Hematology, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Watanabe T. Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment. Cancers (Basel) 2021; 14:cancers14010141. [PMID: 35008305 PMCID: PMC8750340 DOI: 10.3390/cancers14010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
A dominant paradigm being developed in immunotherapy for hematologic malignancies is of adaptive immunotherapy that involves chimeric antigen receptor (CAR) T cells and bispecific T-cell engagers. CAR T-cell therapy has yielded results that surpass those of the existing salvage immunochemotherapy for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) after first-line immunochemotherapy, while offering a therapeutic option for patients with follicular lymphoma (FL) and mantle cell lymphoma (MCL). However, the role of the innate immune system has been shown to prolong CAR T-cell persistence. Cluster of differentiation (CD) 47-blocking antibodies, which are a promising therapeutic armamentarium for DLBCL, are novel innate immune checkpoint inhibitors that allow macrophages to phagocytose tumor cells. Intratumoral Toll-like receptor 9 agonist CpG oligodeoxynucleotide plays a pivotal role in FL, and vaccination may be required in MCL. Additionally, local stimulator of interferon gene agonists, which induce a systemic anti-lymphoma CD8+ T-cell response, and the costimulatory molecule 4-1BB/CD137 or OX40/CD134 agonistic antibodies represent attractive agents for dendritic cell activations, which subsequently, facilitates initiation of productive T-cell priming and NK cells. This review describes the exploitation of approaches that trigger innate immune activation for adaptive immune cells to operate maximally in the tumor microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu City 514-8507, Japan
| |
Collapse
|
32
|
Sun M, Xiao Q, Wang X, Yang C, Chen C, Tian X, Wang S, Li H, Qiu S, Shu J, Shou Y, Liang Y, Xue T, Chen K. Tumor-associated macrophages modulate angiogenesis and tumor growth in a xenograft mouse model of multiple myeloma. Leuk Res 2021; 110:106709. [PMID: 34560409 DOI: 10.1016/j.leukres.2021.106709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/27/2023]
Abstract
Tumor-associated macrophages (TAMs) are closely associated with poor multiple myeloma (MM) prognosis. Therefore, in-depth understanding of the mechanism by which TAM supports MM progression may lead to its effective treatment. We used the MM nude mouse subcutaneous xenograft model to evaluate the efficacy of the macrophage-depleting agent clodronate liposome (Clo) against MM and elucidate the mode of action of this therapy. At the same time, observe whether the elimination of TAM in vivo while silencing the expression of VEGFA has the same effect as in vitro experiments. We also used Clo to eliminate macrophages and reinjected M1 or M2 TAM through mouse tail veins to investigate the effects of various macrophage subtypes on MM xenograft tumor growth. We applied qRT-PCR, immunohistochemistry, and enzyme-linked immunosorbent assay to quantify VEGFA, CD31, and CD163 expression in tumor tissues and sera. Removal of TAMs from the tumor microenvironment impeded tumor growth. The combination of Clo plus VEGFA siRNA had a stronger inhibitory effect on tumor growth than Clo alone, and M2 and M1 macrophages promoted and inhibited tumor growth, respectively. Macrophage depletion combined with cytokine blocking is a promising MM treatment. Targeted M2 macrophage elimination together with cytokine block may be more effective at inhibiting MM growth than either treatment alone. The results of the present study lay an empirical foundation for the development of novel therapeutic strategies for MM.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qiankun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; School of Life Sciences, Zhengzhou University, No. 100 Kexue Da Dao, Zhengzhou, 450001, Henan, People's Republic of China; BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaoqian Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chao Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiangyu Tian
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shuaiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Sen Qiu
- People's Hospital of Zhengzhou, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105, Henan, People's Republic of China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yuwei Shou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yinghao Liang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Tong Xue
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|