1
|
Xiao L, Fang Z, Tang Y, Sun Y, Zhu Z, Li J, Zhou M, Yang N, Zheng K, Hu S. Evaluation of gastrin-releasing peptide receptor, prostate-specific membrane antigen, and neurotensin receptor 1 as potential biomarkers for accurate prostate cancer stratified diagnosis. EJNMMI Res 2024; 14:55. [PMID: 38880858 PMCID: PMC11180645 DOI: 10.1186/s13550-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Studies on single-target PET imaging of gastrin-releasing peptide receptor (GRPR), prostate-specific membrane antigen (PSMA), or neurotensin receptor 1(NTR1) have been reported. However, the performance of these three targets in the progression of PCa remains unclear. Our study aims to compare the expression of GRPR, PSMA, and NTR1 in patients with prostatic intraepithelial neoplasia (PIN), prostate cancer (PCa), and lymph node metastasis. We synthesized molecular probes targeting the markers to achieve a non-invasive precise detection of PCa patients with PET/CT imaging. METHODS In this study, the expression of GRPR, PSMA, and NTR1 was evaluated by immunohistochemistry in 34 PIN, 171 PCa, and 22 lymph node metastasis tissues of patients. The correlation between their expression and the clinicopathological parameters of PCa patients was assessed. Sixteen PCa patients with different Gleason scores (GS) underwent dual-tracer (68Ga-NOTA-RM26 and 68Ga-NOTA-PSMA617) PET/CT. RESULTS In the PIN stage, the expression of GRPR was significantly higher than that of PSMA and NTR1 (P < 0.001), while NTR1 expression was significantly higher than PSMA and GRPR expression in primary PCa (P = 0.001). High PSMA expression in PCa patients was associated with shorter progression-free survival (P = 0.037) and overall survival (P = 0.035). PCa patients with high GS had higher tumor uptake of 68Ga-NOTA-PSMA617 than those with low GS (P = 0.001), while PCa patients with low GS had higher tumor uptake of 68Ga-NOTA-RM26 than those with high GS (P = 0.001). CONCLUSIONS This study presents three novel biomarkers (PSMA, GRPR, and NTR1) as imaging agents for PET/CT, and may offer a promising approach for non-invasive precise detection and Gleason grade prediction of PCa patients.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Zhihui Fang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Yanyan Sun
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Zehua Zhu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Nengan Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Kai Zheng
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Kim JY, Jung JH, Jung S, Lee S, Lee HA, Ouh YT, Hong SH. Glyoxalase 1: Emerging biomarker and therapeutic target in cervical cancer progression. PLoS One 2024; 19:e0299345. [PMID: 38870176 PMCID: PMC11175447 DOI: 10.1371/journal.pone.0299345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Cervical cancer presents a significant global health challenge, disproportionately impacting underserved populations with limited access to healthcare. Early detection and effective management are vital in addressing this public health concern. This study focuses on Glyoxalase-1 (GLO1), an enzyme crucial for methylglyoxal detoxification, in the context of cervical cancer. METHODS We assessed GLO1 expression in cervical cancer patient samples using immunohistochemistry. In vitro experiments using HeLa cells were conducted to evaluate the impact of GLO1 inhibition on cell viability and migration. Single-cell RNA sequencing (scRNA-seq) and gene set variation analysis were utilized to investigate the role of GLO1 in the metabolism of cervical cancer. Additionally, public microarray data were analyzed to determine GLO1 expression across various stages of cervical cancer. RESULTS Our analysis included 58 cervical cancer patients, and showed that GLO1 is significantly upregulated in cervical cancer tissues compared to normal cervical tissues, independent of pathological findings and disease stage. In vitro experiments indicated that GLO1 inhibition by S-p-bromobenzylglutathione cyclopentyl diester decreased cell viability and migration in cervical cancer cell lines. Analyses of scRNA-seq data and public gene expression datasets corroborated the overexpression of GLO1 and its involvement in cancer metabolism, particularly glycolysis. An examination of expression data from precancerous lesions revealed a progressive increase in GLO1 expression from normal tissue to invasive cervical cancer. CONCLUSIONS This study highlights the critical role of GLO1 in the progression of cervical cancer, presenting it as a potential biomarker and therapeutic target. These findings contribute valuable insights towards personalized treatment approaches and augment the ongoing efforts to combat cervical cancer. Further research is necessary to comprehensively explore GLO1's potential in clinical applications.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Soryung Jung
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Hyang Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Department of Obstetrics and Gynecology, Ansan Hospital, Korea University College of Medicine, Gyeonggi, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- KW-Bio Co., Ltd, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Hu L, Xie K, Zheng C, Qiu B, Jiang Z, Luo C, Diao Y, Luo J, Yao X, Shen Y. Exosomal MALAT1 promotes the proliferation of esophageal squamous cell carcinoma through glyoxalase 1-dependent methylglyoxal removal. Noncoding RNA Res 2024; 9:330-340. [PMID: 38505306 PMCID: PMC10945115 DOI: 10.1016/j.ncrna.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
In previous study we characterized the oncogenic role of long non-coding RNA MALAT1 in esophageal squamous cell carcinoma (ESCC), but the detailed mechanism remains obscure. Here we identified glyoxalase 1 (GLO1) as the most possible executor of MALAT1 by microarray screening. GLO1 is responsible for degradation of cytotoxic methylglyoxal (MGO), which is by-product of tumor glycolysis. Accumulated MGO may lead to glycation of DNA and protein, resulting in elevated advanced glycation end products (AGEs), while glyoxalase 1 detoxify MGO to alleviate its cytotoxic effect to tumor cells. GLO1 interfering led to accumulation of AGEs and following activation of DNA injury biomarkers, which lead to cell cycle arrest and growth inhibition. In silico analysis based on online database revealed abundant enrichment of histone acetylation marker H3K27ac in GLO1 promotor, and acetyltransferase inhibitor C646 declined GLO1 expression. Acetyltransferase KAT2B, which was also identified as a target of MALAT, mediated histone lysine acetylation of GLO1 promotor, which was confirmed by ChIP-qPCR experiment. Shared binding sites of miR-206 were found on MALAT1 and KAT2B mRNA. Dual-luciferase reporter assays confirmed interaction within MALAT1-miR-206-GLO1. Finally, we identified MALAT1 encapsuled by exosome from donor cells, and transferred malignant behaviors to recipient cells. The secreted exosomes may enter circulation, and serum MALAT1 level combined with traditional tumor markers showed potential power for ESCC diagnosis.
Collapse
Affiliation(s)
- Liwen Hu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Xie
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Chao Zheng
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Thoracic Surgery, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingmei Qiu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhisheng Jiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Diao
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Yao
- Department of Laboratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Brokāne A, Bajo-Santos C, Zayakin P, Belovs A, Jansons J, Lietuvietis V, Martens-Uzunova ES, Jenster GW, Linē A. Validation of potential RNA biomarkers for prostate cancer diagnosis and monitoring in plasma and urinary extracellular vesicles. Front Mol Biosci 2023; 10:1279854. [PMID: 38099195 PMCID: PMC10720733 DOI: 10.3389/fmolb.2023.1279854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Prostate cancer (PCa), one of the most prevalent malignancies affecting men worldwide, presents significant challenges in terms of early detection, risk stratification, and active surveillance. In recent years, liquid biopsies have emerged as a promising non-invasive approach to complement or even replace traditional tissue biopsies. Extracellular vesicles (EVs), nanosized membranous structures released by various cells into body fluids, have gained substantial attention as a source of cancer biomarkers due to their ability to encapsulate and transport a wide range of biological molecules, including RNA. In this study, we aimed to validate 15 potential RNA biomarkers, identified in a previous EV RNA sequencing study, using droplet digital PCR. Methods: The candidate biomarkers were tested in plasma and urinary EVs collected before and after radical prostatectomy from 30 PCa patients and their diagnostic potential was evaluated in a test cohort consisting of 20 benign prostate hyperplasia (BPH) and 20 PCa patients' plasma and urinary EVs. Next, the results were validated in an independent cohort of plasma EVs from 31 PCa and 31 BPH patients. Results: We found that the levels of NKX3-1 (p = 0.0008) in plasma EVs, and tRF-Phe-GAA-3b (p < 0.0001) tRF-Lys-CTT-5c (p < 0.0327), piR-28004 (p = 0.0081) and miR-375-3p (p < 0.0001) in urinary EVs significantly decreased after radical prostatectomy suggesting that the main tissue source of these RNAs is prostate and/or PCa. Two mRNA biomarkers-GLO1 and NKX3-1 showed promising diagnostic potential in distinguishing between PCa and BPH with AUC of 0.68 and 0.82, respectively, in the test cohort and AUC of 0.73 and 0.65, respectively, in the validation cohort, when tested in plasma EVs. Combining these markers in a biomarker model yielded AUC of 0.85 and 0.71 in the test and validation cohorts, respectively. Although the PSA levels in the blood could not distinguish PCa from BPH in our cohort, adding PSA to the mRNA biomarker model increased AUC from 0.71 to 0.76. Conclusion: This study identified two novel EV-enclosed RNA biomarkers-NKX3-1 and GLO1-for the detection of PCa, and highlights the complementary nature of GLO1, NKX3-1 and PSA as combined biomarkers in liquid biopsies of PCa.
Collapse
Affiliation(s)
- Agnese Brokāne
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | - Guido W. Jenster
- Department of Urology, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
5
|
Qu X, Tan H, Mao J, Yang M, Xu J, Yan X, Wu W. Identification of a novel prognostic signature correlated with epithelial-mesenchymal transition, N6-methyladenosine modification, and immune infiltration in colorectal cancer. Cancer Med 2023; 12:5926-5938. [PMID: 36281556 PMCID: PMC10028107 DOI: 10.1002/cam4.5384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is a commonly diagnosed human malignancy worldwide. Both epithelial-mesenchymal transition (EMT) and N6-methyladenosine (m6A) modification play a crucial role in CRC development. This study aimed to construct a prognostic signature based on the genes related to EMT and m6A modification. METHOD Firstly, the mRNA expression profiling of CRC tissues was analyzed using TCGA and GEO databases. The prognostic hub genes related to EMT and m6A modification were selected using weighted correlation network and cox regression analysis. The prognostic signature was constructed based on hub genes, followed by validation in three external cohorts. Finally, the expression of the representative hub gene was detected in clinical samples, and its biological role was investigated using assays in vivo and in vitro. RESULTS A prognostic signature was constructed using the following genes: YAP1, FAM3C, NUBPL, GLO1, JARID2, NFKB1, CDKN1B, HOOK1, and GIPC2. The signature effectively stratified the clinical outcome of CRC patients in the training cohort and two validation cohorts. The subgroup analysis demonstrated the signature could identify high-risk population from CRC patients within stage I-II or III-IV, female, male and elder patients. The signature was correlated with the infiltration of some immune cells (such as macrophage and regulatory T cells) and gene mutation counts. Finally, the hub gene GIPC2 was found to be downregulated in CRC tissues and most CRC cells lines. GIPC2 overexpression inhibited the malignant characteristics of CRC cells in vitro and in vivo through upregulating E-cadherin and downregulating N-cadherin, Vimentin, and Snail, while the opposite results were observed for GIPC2 knockdown in CRC cells. CONCLUSION Our present study for the first time constructed a novel prognostic signature related to EMT, m6A modification, and immune infiltration for CRC risk stratification. In addition, GIPC2 is identified as a promising clinical biomarker or therapeutical target for CRC.
Collapse
Affiliation(s)
- Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghong Tan
- Department of VIP Clinic, General Division, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai East Hospital Ji'an Hospital, Ji'an, China
| | - Jingxian Mao
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mengxue Yang
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jian Xu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenjuan Wu
- Department of Oncology, Northern Jiangsu People's Hospital affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Editorial for the Special Edition of Advanced Prostate Cancer: From Bench to Bedside. Cancers (Basel) 2023; 15:cancers15041247. [PMID: 36831589 PMCID: PMC9953930 DOI: 10.3390/cancers15041247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Prostate cancer is generally viewed as a slow-growing unaggressive cancer, yet it is one of the most commonly diagnosed cancers and a leading cause of morbidity and mortality in men around the world [...].
Collapse
|
7
|
Bajo-Santos C, Brokāne A, Zayakin P, Endzeliņš E, Soboļevska K, Belovs A, Jansons J, Sperga M, Llorente A, Radoviča-Spalviņa I, Lietuvietis V, Linē A. Plasma and urinary extracellular vesicles as a source of RNA biomarkers for prostate cancer in liquid biopsies. Front Mol Biosci 2023; 10:980433. [PMID: 36818049 PMCID: PMC9935579 DOI: 10.3389/fmolb.2023.980433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Extracellular vesicles (EVs) have emerged as a very attractive source of cancer- derived RNA biomarkers for the early detection, prognosis and monitoring of various cancers, including prostate cancer (PC). However, biofluids contain a mixture of EVs released from a variety of tissues and the fraction of total EVs that are derived from PC tissue is not known. Moreover, the optimal biofluid-plasma or urine-that is more suitable for the detection of EV- enclosed RNA biomarkers is not yet clear. Methodology: In the current study, we performed RNA sequencing analysis of plasma and urinary EVs collected before and after radical prostatectomy, and matched tumor and normal prostate tissues of 10 patients with prostate cancer. Results and Discussion: The most abundant RNA biotypes in EVs were miRNA, piRNA, tRNA, lncRNA, rRNA and mRNA. To identify putative cancer-derived RNA biomarkers, we searched for RNAs that were overexpressed in tumor as compared to normal tissues, present in the pre-operation EVs and decreased in the post-operation EVs in each RNA biotype. The levels of 63 mRNAs, 3 lncRNAs, 2 miRNAs and 1 piRNA were significantly increased in the tumors and decreased in the post-operation urinary EVs, thus suggesting that these RNAs mainly originate from PC tissue. No such RNA biomarkers were identified in plasma EVs. This suggests that the fraction of PC-derived EVs in urine is larger than in plasma and allows the detection and tracking of PC-derived RNAs.
Collapse
Affiliation(s)
| | - Agnese Brokāne
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | - Alicia Llorente
- Department Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | | | | | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia,*Correspondence: Aija Linē,
| |
Collapse
|
8
|
Kim JY, Jung JH, Lee SJ, Han SS, Hong SH. Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells. Mol Cells 2022; 45:869-876. [PMID: 36172978 PMCID: PMC9794553 DOI: 10.14348/molcells.2022.0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential anti-tumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathione-dependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- KW-Bio Co., Ltd., Wonju 26487, Korea
| |
Collapse
|
9
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|