1
|
Wu X, Zhu L, Sun X, Xia M, Zhao S, Zhang B, Xia T. A novel risk stratification approach and molecular subgroup characterization based on coagulation related genes in colon adenocarcinoma. Cancer Cell Int 2024; 24:309. [PMID: 39252019 PMCID: PMC11386116 DOI: 10.1186/s12935-024-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Colon adenocarcinoma (COAD) represents a significant health concern within the population. Advancing our understanding of COAD is imperative for early detection, enabling personalized treatment interventions, and facilitating the development of effective preventive measures. The coagulation system plays a role in tumor-related pathological processes; however, its specific involvement in COAD and potential contributors remain unclear. This study aimed to establish a novel risk stratification approach by analyzing coagulation related genes (CRGs) associated with COAD. Through a comprehensive bioinformatics analysis of data from public databases, we screened COAD associated CRGs and characterized the associated molecular subtypes. After a comprehensive analysis of the characteristics of each subtype, we applied differentially expressed genes in CRG subtypes to establish a new risk stratification method. Clinical subgroup analysis, immunoinfiltration analysis, therapeutic reactivity prediction and other analytical methods suggest the potential clinical value of the established risk stratification method. As one of the selected targets, the effect of MS4A4A on the proliferation and invasion of COAD was confirmed by in vitro experiments, which partially verified the reliability of bioinformatics results. Our findings delineate CRGs potentially implicated in COAD pathogenesis and offer fresh insights into the influence of the coagulation process on tumorigenesis and progression.
Collapse
Affiliation(s)
- Xiangxin Wu
- Department of Abdominal Surgery, Ganzhou Cancer Hospital, Ganzhou, China
| | - Lichong Zhu
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Haemostatic Gene Expression in Cancer-Related Immunothrombosis: Contribution for Venous Thromboembolism and Ovarian Tumour Behaviour. Cancers (Basel) 2024; 16:2356. [PMID: 39001418 PMCID: PMC11240748 DOI: 10.3390/cancers16132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynaecological malignancy. Identifying new prognostic biomarkers is an important research field. Haemostatic components together with leukocytes can drive cancer progression while increasing the susceptibility to venous thromboembolism (VTE) through immunothrombosis. Unravelling the underlying complex interactions offers the prospect of uncovering relevant OC prognostic biomarkers, predictors of cancer-associated thrombosis (CAT), and even potential targets for cancer therapy. Thus, this study evaluated the expression of F3, F5, F8, F13A1, TFPI1, and THBD in peripheral blood cells (PBCs) of 52 OC patients. Those with VTE after tumour diagnosis had a worse overall survival (OS) compared to their counterparts (mean OS of 13.8 ± 4.1 months and 47.9 ± 5.7 months, respectively; log-rank test, p = 0.001). Low pre-chemotherapy F3 and F8 expression levels were associated with a higher susceptibility for OC-related VTE after tumour diagnosis (χ2, p < 0.05). Regardless of thrombogenesis, patients with low baseline F8 expression had a shorter progression-free survival (PFS) than their counterparts (adjusted hazard ratio (aHR) = 2.54; p = 0.021). Among those who were not under platelet anti-aggregation therapy, low F8 levels were also associated with a shorter OS (aHR = 6.16; p = 0.006). Moving forward, efforts should focus on external validation in larger cohorts.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
3
|
Livnat T, Dardik R. Special Issue "Genetic, Functional and Therapeutic Aspects of Procoagulant and Anticoagulant Factors". Int J Mol Sci 2024; 25:5741. [PMID: 38891929 PMCID: PMC11172113 DOI: 10.3390/ijms25115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Pro- and anticoagulant factors are core components of hemostasis [...].
Collapse
Affiliation(s)
- Tami Livnat
- The Amalia Biron Research Institute of Thrombosis and Hemostasis, Faculty of Medical and Health Sciences, Tel-Aviv University and the National Hemophilia Center Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Rima Dardik
- The Amalia Biron Research Institute of Thrombosis and Hemostasis, Faculty of Medical and Health Sciences, Tel-Aviv University and the National Hemophilia Center Sheba Medical Center, Tel-Hashomer 52621, Israel
| |
Collapse
|
4
|
Lei C, Li Y, Yang H, Zhang K, Lu W, Wang N, Xuan L. Unraveling breast cancer prognosis: a novel model based on coagulation-related genes. Front Mol Biosci 2024; 11:1394585. [PMID: 38751445 PMCID: PMC11094261 DOI: 10.3389/fmolb.2024.1394585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Breast cancer is highly heterogeneous, presenting challenges in prognostic assessment. Developing a universally applicable prognostic model could simplify clinical decision-making. This study aims to develop and validate a novel breast cancer prognosis model using coagulation-related genes with broad clinical applicability. Methods A total of 203 genes related to coagulation were obtained from the KEGG database, and the mRNA data of 1,099 tumor tissue samples and 572 samples of normal tissue were retrieved from the TCGA-BRCA cohort and GTEx databases. The R package "limma" was utilized to detect variations in gene expression related to coagulation between the malignancies and normal tissue. A model was constructed in the TCGA cohort through a multivariable Cox regression analysis, followed by validation using the GSE42568 dataset as the testing set. Constructing a nomogram incorporating clinical factors to enhance the predictive capacity of the model. Utilizing the ESTIMATE algorithm to investigate the immune infiltration levels in groups with deferent risk. Performing drug sensitivity analysis using the "oncoPredict" package. Results A risk model consisting of six coagulation-associated genes (SERPINA1, SERPINF2, C1S, CFB, RASGRP1, and TLN2) was created and successfully tested for validation. Identified were 6 genes that serve as protective factors in the model's development. Kaplan-Meier curves revealed a worse prognosis in the high-risk group compared to the low-risk group. The ROC analysis showed that the model accurately forecasted the overall survival (OS) of breast cancer patients at 1, 3, and 5 years. Nomogram accompanied by calibration curves can also provide better guidance for clinical decision-making. The low-risk group is more likely to respond well to immunotherapy, whereas the high-risk group may show improved responses to Gemcitabine treatment. Furthermore, individuals in distinct risk categories displayed different responses to various medications within the identical therapeutic category. Conclusion We established a breast cancer prognostic model incorporating six coagulation-associated genes and explored its clinical utility. This model offers valuable insights for clinical decision-making and drug selection in breast cancer patients, contributing to personalized and precise treatment advancements.
Collapse
Affiliation(s)
- Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hosipital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Shahi S, Kang T, Fonseka P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024; 13:754. [PMID: 38727289 PMCID: PMC11083420 DOI: 10.3390/cells13090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.
Collapse
Affiliation(s)
| | | | - Pamali Fonseka
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (S.S.); (T.K.)
| |
Collapse
|
6
|
Doubre H, Monnet I, Azarian R, Girard P, Meyer G, Trichereau J, Devillier P, Van Dreden P, Couderc LJ, Chouaid C, Vasse M. Plasma tissue factor activity in lung cancer patients predicts venous thromboembolism and poor overall survival. Res Pract Thromb Haemost 2024; 8:102359. [PMID: 38666062 PMCID: PMC11043639 DOI: 10.1016/j.rpth.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Biomarkers to identify lung cancer (LC) patients with high risk of venous thromboembolism (VTE) are needed. Objectives To evaluate the usefulness of plasma tissue factor activity (TFA) and D-dimer levels for the prediction of VTE and overall survival in patients with LC. Methods In a prospective multicenter observational cohort of consecutive LC patients, TFA and D-dimer levels were measured at diagnosis before any cancer treatment (V1) and between 8 and 12 weeks after diagnosis (V2). Results Among 302 patients, 38 (12.6%) experienced VTE within the first year after diagnosis. V1-TFA and V1-D-dimer levels were significantly (P = .02) higher in patients who presented VTE within 3 months than in patients without VTE: V1-TFA was 2.02 (25th-75th percentiles, 0.20-4.01) vs 0.49 (0.20-3.09) ng/mL and V1-D-dimer was 1.42 (0.64-4.40) vs 0.69 (0.39-1.53) μg/mL, respectively. Cutoffs of 1.92 ng/mL for TFA and 1.26 μg/mL for D-dimer could discriminate both groups of patients. In multivariate analysis, V1-TFA > 1.92 ng/mL was the only significant predictor of VTE risk at 1 year (hazard ratio, 2.10; 95% CI, 1.06-4.16; P = .03). V2-TFA, quantified in 251 patients, decreased significantly compared with V1-TFA (0.20 vs 0.56 ng/mL, P < .05), but a V2-TFA level > 0.77 ng/mL could predict VTE in the following 3 months. Median overall survival was worse for patients with V1-TFA > 1.92 ng/mL (14.6 vs 23.8 months) and V1-D-dimer > 1.26 μg/mL (13.8 vs 24 months, P < .001). Conclusion High plasma TFA levels are associated with the occurrence of VTE within the next 3 months after each visit (V1 or V2) and poor survival.
Collapse
Affiliation(s)
- Helene Doubre
- Service de Pneumologie, Hôpital Foch, Suresnes, France
| | - Isabelle Monnet
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Reza Azarian
- Service de Pneumologie, Centre Hospitalier Versailles, Le Chesnay, France
| | - Philippe Girard
- Département de pneumologie, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
| | - Guy Meyer
- Service de Pneumologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Trichereau
- Direction Recherche Clinique et Innovation, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- VIM Suresnes, UMR 0892, Pôle des Maladies Respiratoires, Hopital Foch, Université Paris Saclay, Suresnes, France
| | | | | | - Christos Chouaid
- Service de Pneumologie, Centre Hospitalier Intercommunal, Creteil, France
| | - Marc Vasse
- Biology Department, Hôpital Foch, Suresnes, France
- UMRS-1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Martinelli N, Moruzzi S, Udali S, Castagna A, Di Santo L, Ambrosani F, Baroni M, Pattini P, Pizzolo F, Ruzzenente A, Conci S, Grusse M, Campagnaro T, Van Dreden P, Guglielmi A, Bernardi F, Olivieri O, Friso S. Tissue factor pathway-related biomarkers in liver cancer: activated factor VII-antithrombin complex and tissue factor mRNA levels are associated with mortality. Res Pract Thromb Haemost 2024; 8:102310. [PMID: 38282902 PMCID: PMC10818084 DOI: 10.1016/j.rpth.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Tissue factor (TF), the main initiator of the coagulation cascade, plays a role in cancer progression and prognosis. Activated factor VII-antithrombin complex (FVIIa-AT) is considered an indirect marker of TF exposure by reflecting TF-FVIIa interaction. Objectives To assess the link between FVIIa-AT plasma levels, TF messenger RNA (mRNA) expression, and survival in cancer. Methods TF pathway-related coagulation biomarkers were assessed in 136 patients with cancer (52 with hepatocellular carcinoma, 41 with cholangiocarcinoma, and 43 with colon cancer) undergoing surgical intervention with curative intent. TF mRNA expression analysis in neoplastic vs nonneoplastic liver tissues was evaluated in a subgroup of 91 patients with primary liver cancer. Results FVIIa-AT levels were higher in patients with cancer than in 136 sex- and age-matched cancer-free controls. In patients with cancer, high levels of FVIIa-AT and total TF pathway inhibitor were associated with an increased mortality risk after adjustment for confounders, but only FVIIa-AT remained a predictor of mortality by including both FVIIa-AT and total TF pathway inhibitor in Cox regression (hazard ratio, 2.80; 95% CI, 1.23-6.39; the highest vs the lowest quartile). This association remained significant even after adjustment for extracellular vesicle-associated TF-dependent procoagulant activity. In the subgroup of patients with primary liver cancer, patients with high TF mRNA levels had an increased mortality risk compared with that for those with low TF mRNA levels (hazard ratio, 1.92; 95% CI, 1.03-3.57), and there was a consistent correlation among high FVIIa-AT levels, high TF mRNA levels, and increased risk of mortality. Conclusion High FVIIa-AT levels may allow the identification of patients with cancer involving high TF expression and predict a higher mortality risk in liver cancer.
Collapse
Affiliation(s)
| | - Sara Moruzzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Udali
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Laura Di Santo
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Simone Conci
- Department of Surgery, University of Verona, Verona, Italy
| | - Matthieu Grusse
- Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | | | | | | | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
8
|
Su Y, Yi J, Zhang Y, Leng D, Huang X, Shi X, Zhang Y. EML4-ALK fusion protein in Lung cancer cells enhances venous thrombogenicity through the pERK1/2-AP-1-tissue factor axis. J Thromb Thrombolysis 2024; 57:67-81. [PMID: 37940761 PMCID: PMC10830642 DOI: 10.1007/s11239-023-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Accumulating evidence links the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement to venous thromboembolism (VTE) in non-small cell lung cancer (NSCLC) patients. However, the corresponding mechanisms remain unclear. METHOD High-throughput sequencing analysis of H3122 human ALK-positive NSCLC cells treated with ALK inhibitor/ dimethyl sulfoxide (DMSO) was performed to identify coagulation-associated differential genes between EML4-ALK fusion protein inhibited cells and control cells. Sequentially, we confirmed its expression in NSCLC patients' tissues and in the plasma of a subcutaneous xenograft mouse model. An inferior vena cava (IVC) ligation model was used to assess clot formation potential. Additionally, pathways involved in tissue factor (TF) regulation were explored in ALK-positive cell lines H3122 and H2228. Statistical significance was determined by Student t-test and one-way ANOVA using SPSS. RESULTS Sequencing analysis identified a significant downregulation of TF after inhibiting EML4-ALK fusion protein activity in H3122 cells. In clinical NSCLC cases, TF expression was increased especially in ALK-positive NSCLC tissues. Meanwhile, H3122 and H2228 with high TF expression exhibited shorter plasma clotting time and higher TF activity versus ALK-negative H1299 and A549 in cell culture supernatant. Mice bearing H2228 tumor showed a higher concentration of tumor-derived TF and TF activity in plasma and the highest adjusted IVC clot weights. Limiting EML4-ALK protein phosphorylation downregulated extracellular regulated protein kinases 1/2 (ERK1/2)-activating the protein-1(AP-1) signaling pathway and thus attenuated TF expression. CONCLUSION EML4-ALK fusion protein may enhance venous thrombogenicity by regulating coagulation factor TF expression. There was potential involvement of the pERK1/2-AP-1 pathway in this process.
Collapse
Affiliation(s)
- Yanping Su
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiawen Yi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Leng
- Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoxi Huang
- Basic Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
9
|
Guo S, Huang J, Li G, Chen W, Li Z, Lei J. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis. Mol Cancer 2023; 22:193. [PMID: 38037077 PMCID: PMC10688140 DOI: 10.1186/s12943-023-01909-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
Current research has demonstrated that extracellular vesicles (EVs) and circulating tumor cells (CTCs) are very closely related in the process of distant tumor metastasis. Primary tumors are shed and released into the bloodstream to form CTCs that are referred to as seeds to colonize and grow in soil-like distant target organs, while EVs of tumor and nontumor origin act as fertilizers in the process of tumor metastasis. There is no previous text that provides a comprehensive review of the role of EVs on CTCs during tumor metastasis. In this paper, we reviewed the mechanisms of EVs on CTCs during tumor metastasis, including the ability of EVs to enhance the shedding of CTCs, protect CTCs in circulation and determine the direction of CTC metastasis, thus affecting the distant metastasis of tumors.
Collapse
Affiliation(s)
- Siyin Guo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Min L, Bao H, Bu F, Li X, Guo Q, Liu M, Zhu S, Meng J, Zhang S, Wang S. Machine-Learning-Assisted Procoagulant Extracellular Vesicle Barcode Assay toward High-Performance Evaluation of Thrombosis-Induced Death Risk in Cancer Patients. ACS NANO 2023; 17:19914-19924. [PMID: 37791763 DOI: 10.1021/acsnano.3c04615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) is the most fatal complication in cancer patients. Unfortunately, the frequent misdiagnosis of VTE owing to the lack of accurate and efficient evaluation approaches may cause belated medical intervention and even sudden death. Herein, we present a rapid, easily operable, highly specific, and highly sensitive procoagulant extracellular vesicle barcode (PEVB) assay composed of TiO2 nanoflower (TiNFs) for visually evaluating VTE risk in cancer patients. TiNFs demonstrate rapid label-free EV capture capability by the synergetic effect of TiO2-phospholipids molecular interactions and topological interactions between TiNFs and EVs. From ordinary plasma samples, the PEVB assay can evaluate potential VTE risk by integrating TiNFs-based EV capture and in situ EV procoagulant ability test with machine-learning-assisted clinical data analysis. We demonstrate the feasibility of this PEVB assay in VTE risk evaluation by screening 167 cancer patients, as well as the high specificity (97.1%) and high sensitivity (96.8%), fully exceeding the nonspecific and posterior traditional VTE test. Together, we proposed a TiNFs platform allowing for highly accurate and timely diagnosis of VTE in cancer patients.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Xueqing Li
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou City, Shandong Province 256606, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou City, Shandong Province 256606, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Anijs RJS, Cannegieter SC, Versteeg HH, Buijs JT. "MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism?": reply. J Thromb Haemost 2023; 21:2638-2639. [PMID: 37597903 DOI: 10.1016/j.jtha.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/AnijsRayna
| | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Abstract
Platelet-derived extracellular vesicles (PEVs) are a subset of EVs that are released from platelets, which are small nuclear cell fragments that play a critical role in hemostasis and thrombosis. PEVs have been shown to have important roles in a variety of physiological and pathological processes, including inflammation, angiogenesis, and cancer. Recently, researchers, including our group have utilized PEVs as drug delivery platforms as PEVs could target inflammatory sites both passively and actively. This review summarizes the biological function of PEVs, introduces recent applications of PEVs in targeted drug delivery, and provides an outlook for the further development of utilizing PEVs for drug delivery.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
13
|
Wang D, Cui SP, Chen Q, Ren ZY, Lyu SC, Zhao X, Lang R. The coagulation-related genes for prognosis and tumor microenvironment in pancreatic ductal adenocarcinoma. BMC Cancer 2023; 23:601. [PMID: 37386391 DOI: 10.1186/s12885-023-11032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by challenging early diagnosis and poor prognosis. It is believed that coagulation has an impact on the tumor microenvironment of PDAC. The aim of this study is to further distinguish coagulation-related genes and investigate immune infiltration in PDAC. METHODS We gathered two subtypes of coagulation-related genes from the KEGG database, and acquired transcriptome sequencing data and clinical information on PDAC from The Cancer Genome Atlas (TCGA) database. Using an unsupervised clustering method, we categorized patients into distinct clusters. We investigated the mutation frequency to explore genomic features and performed enrichment analysis, utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) to explore pathways. CIBERSORT was used to analyze the relationship between tumor immune infiltration and the two clusters. A prognostic model was created for risk stratification, and a nomogram was established to assist in determining the risk score. The response to immunotherapy was assessed using the IMvigor210 cohort. Finally, PDAC patients were recruited, and experimental samples were collected to validate the infiltration of neutrophils using immunohistochemistry. In addition, and identify the ITGA2 expression and function were identified by analyzing single cell sequencing data. RESULTS Two coagulation-related clusters were established based on the coagulation pathways present in PDAC patients. Functional enrichment analysis revealed different pathways in the two clusters. Approximately 49.4% of PDAC patients experienced DNA mutation in coagulation-related genes. Patients in the two clusters displayed significant differences in terms of immune cell infiltration, immune checkpoint, tumor microenvironment and TMB. We developed a 4-gene prognostic stratified model through LASSO analysis. Based on the risk score, the nomogram can accurately predict the prognosis in PDAC patients. We identified ITGA2 as a hub gene, which linked to poor overall survival (OS) and short disease-free survival (DFS). Single-cell sequencing analysis demonstrated that ITGA2 was expressed by ductal cells in PDAC. CONCLUSIONS Our study demonstrated the correlation between coagulation-related genes and the tumor immune microenvironment. The stratified model can predict the prognosis and calculate the benefits of drug therapy, thus providing the recommendations for clinical personalized treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Song-Ping Cui
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Qing Chen
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Zhang-Yong Ren
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
14
|
Price JM, Hisada Y, Hazeldine J, Bae-Jump V, Luther T, Mackman N, Harrison P. Detection of tissue factor-positive extracellular vesicles using the ExoView R100 system. Res Pract Thromb Haemost 2023; 7:100177. [PMID: 37333992 PMCID: PMC10276261 DOI: 10.1016/j.rpth.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 06/20/2023] Open
Abstract
Background Tissue factor (TF) is essential for hemostasis. TF-expressing extracellular vesicles (TF+ EVs) are released in pathological conditions, such as trauma and cancer, and are linked to thrombosis. Detection of TF+ EV antigenically in plasma is challenging due to their low concentration but may be of clinical utility. Objectives We hypthesised that ExoView can allow for direct measurement of TF+ EV in plasma, antigenically. Methods We utilized the anti-TF monoclonal antibody 5G9 to capture TF EV onto specialized ExoView chips. This was combined with fluorescent TF+ EV detection using anti-TF monoclonal antibody IIID8-AF647. We measured tumor cell-derived (BxPC-3) TF+ EV and TF+ EVs from plasma derived from whole blood with or without lipopolysaccharide (LPS) stimulation. We used this system to analyze TF+ EVs in 2 relevant clinical cohorts: trauma and ovarian cancer. We compared ExoView results with an EV TF activity assay. Results BxPC-3-derived TF+ EVs were identified with ExoView using 5G9 capture with IIID8-AF647 detection. 5G9 capture with IIID8-AF647 detection was significantly higher in LPS+ samples than in LPS samples and correlated with EV TF activity (R2 = 0.28). Trauma patient samples had higher levels of EV TF activity than healthy controls, but activity did not correlate with TF measurements made by ExoView (R2 = 0.15). Samples from patients with ovarian cancer have higher levels of EV TF activity than those from healthy controls, but activity did not correlate with TF measurement by ExoView (R2 = 0.0063). Conclusion TF+ EV measurement is possible in plasma, but the threshold and potential clinical applicability of ExoView R100, in this context, remain to be established.
Collapse
Affiliation(s)
- Joshua M.J. Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Yohei Hisada
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas Luther
- Institute of Pathology, Technical University Dresden, Dresden, Germany
| | - Nigel Mackman
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Schneider KM, Giehl K, Baeurle SA. Development and application of an agent-based model for the simulation of the extravasation process of circulating tumor cells. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3679. [PMID: 36606741 DOI: 10.1002/cnm.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023]
Abstract
The primary cause for cancer-related death is metastasis, and although this phenomenon is the hallmark of cancer, it remains poorly understood. Since studies on the underlying mechanisms are still demanding by experimental means prognostic tools based on computer models can be of great value, not only for elucidating metastasis formation but also for assessing the prospective benefits as well as risks of a therapy for patients with advanced cancer. Here, we present an agent-based model (ABM), describing the complete process of platelet-assisted extravasation of circulating tumor cells (CTCs) from the chemoattraction of blood platelets by the CTCs up to the embedding of the CTCs in the epithelial tissue by computational means. From the simulation results, we conclude that the ABM produces results in consistency with experimental observations, which opens new perspectives for the development of computer models for predicting the efficacity of drug-based tumor therapies and assisting precision medicine approaches.
Collapse
Affiliation(s)
- Kay M Schneider
- Department of Chemistry and Biology, Universität Siegen, Siegen, Germany
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine IV, Justus-Liebig University Giessen, Giessen, Germany
| | - Stephan A Baeurle
- Department of Chemistry and Biology, Universität Siegen, Siegen, Germany
| |
Collapse
|
16
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
17
|
Catheter-related thrombosis (CRT) in patients with solid tumors: a narrative review and clinical guidance for daily care. Support Care Cancer 2022; 30:8577-8588. [PMID: 35932317 DOI: 10.1007/s00520-022-07297-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Central venous access devices (CVADs) including central venous catheters and peripherally inserted central catheters (PICCs) are essential in the treatment of cancer. Catheter-related thrombosis (CRT) is the most frequent non-infectious complication associated with the use of central lines. The development of CRT may cause to delays in oncologic treatment and increase morbidity leading to potentially life-threatening complications. Several local and systemic risk factors are associated with the development of CRT and should be taken into account to prevent CRT by standardizing appropriate catheter placement and maintenance. The use of primary pharmacological thromboprophylaxis in order to avoid CRT is not routinely recommended, although it can be considered in selected cases. Recommendations for the management of established CRT are based on the extrapolation of anticoagulation for lower limb venous thrombosis. The present review summarizes the current evidence and recommendations for the prevention and management of CRT and identifies areas that require further research.
Collapse
|
18
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW As of January 8, 2022, a global pandemic caused by infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a new RNA virus, has resulted in 304,896,785 cases in over 222 countries and regions, with over 5,500,683 deaths (www.worldometers.info/coronavirus/). Reports of neurological and psychiatric symptoms in the context of coronavirus infectious disease 2019 (COVID-19) range from headache, anosmia, and dysgeusia, to depression, fatigue, psychosis, seizures, delirium, suicide, meningitis, encephalitis, inflammatory demyelination, infarction, and acute hemorrhagic necrotizing encephalopathy. Moreover, 30-50% of COVID-19 survivors develop long-lasting neurologic symptoms, including a dysexecutive syndrome, with inattention and disorientation, and/or poor movement coordination. Detection of SARS-CoV-2 RNA within the central nervous system (CNS) of patients is rare, and mechanisms of neurological damage and ongoing neurologic diseases in COVID-19 patients are unknown. However, studies demonstrating viral glycoprotein effects on coagulation and cerebral vasculature, and hypoxia- and cytokine-mediated coagulopathy and CNS immunopathology suggest both virus-specific and neuroimmune responses may be involved. This review explores potential mechanistic insights that could contribute to COVID-19-related neurologic disease. RECENT FINDINGS While the development of neurologic diseases during acute COVID-19 is rarely associated with evidence of viral neuroinvasion, new evidence suggests SARS-CoV-2 Spike (S) protein exhibits direct inflammatory and pro-coagulation effects. This, in conjunction with immune dysregulation resulting in cytokine release syndrome (CRS) may result in acute cerebrovascular or neuroinflammatory diseases. Additionally, CRS-mediated loss of blood-brain barrier integrity in specific brain regions may contribute to the expression of proinflammatory mediators by neural cells that may impact brain function long after resolution of acute infection. Importantly, host co-morbid diseases that affect vascular, pulmonary, or CNS function may contribute to the type of neurologic disease triggered by SARS-COV-2 infection. SUMMARY Distinct effects of SARS-CoV-2 S protein and CNS compartment- and region-specific responses to CRS may underlie acute and chronic neuroinflammatory diseases associated with COVID-19.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Mantha S, Rak J. Cancer genetic alterations and risk of venous thromboembolism. Thromb Res 2022; 213 Suppl 1:S29-S34. [DOI: 10.1016/j.thromres.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 10/18/2022]
|
21
|
Le Chapelain O, Ho-Tin-Noé B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers (Basel) 2022; 14:cancers14092192. [PMID: 35565321 PMCID: PMC9105443 DOI: 10.3390/cancers14092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is the complex and heterogenous ecosystem of solid tumors known to influence their growth and their progression. Besides tumor cells, the TME comprises a variety of host-derived cell types, ranging from endothelial cells to fibroblasts and immune cells. Clinical and experimental data are converging to indicate that platelets, originally known for their fundamental hemostatic function, also participate in tumor development and shaping of the TME. Considering the abundance of antiplatelet drugs, understanding if and how platelets contribute to the TME may lead to new therapeutic tools for improved cancer prevention and treatments. Abstract The tumor microenvironment (TME) has gained considerable interest because of its decisive impact on cancer progression, response to treatment, and disease recurrence. The TME can favor the proliferation, dissemination, and immune evasion of cancer cells. Likewise, there is accumulating evidence that intratumoral platelets could favor the development and aggressiveness of solid tumors, notably by influencing tumor cell phenotype and shaping the vascular and immune TME components. Yet, in contrast to other tumor-associated cell types like macrophages and fibroblasts, platelets are still often overlooked as components of the TME. This might be due, in part, to a deficit in investigating and reporting the presence of platelets in the TME and its relationships with cancer characteristics. This review summarizes available evidence from clinical and animal studies supporting the notion that tumor-associated platelets are not incidental bystanders but instead integral and active components of the TME. A particular emphasis is given to the description of intratumoral platelets, as well as to the functional consequences and possible mechanisms of intratumoral platelet accumulation.
Collapse
|
22
|
Zhang X, Wang X, Li W, Dang C, Diao D. Effectiveness of managing suspected metastasis using plasma D-dimer testing in gastric cancer patients. Am J Cancer Res 2022; 12:1169-1178. [PMID: 35411224 PMCID: PMC8984896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023] Open
Abstract
Tumor metastasis is closely related to the coagulation system. Tumor metastasis and hypercoagulability promote each other through multiple mechanisms. However, whether coagulation indicators can reflect tumor metastasis remains to be explored. Clinical characteristics of a total of 3447 patients from three tertiary referral centers were collected. Then the diagnostic efficacy of FDP, D-dimer and GC tumor markers [Carcinoembryonic antigen (CEA), Carbohydrate antigen 19-9 (CA19-9) and Carbohydrate antigen 72-4 (CA72-4)] for GC metastases was evaluated by the receiver operating characteristic curve (ROC) analyses. Then we conducted a joint ROC curve analysis. The effects of coagulation parameters and tumor markers on gastric cancer metastasis were assessed using multiple logistic regression analysis. 2049 patients were diagnosed with primary GC, 1398 patients with metastatic GC. Based on comparison of AUC, FDP (cutoff, 1.915) had significantly higher diagnostic efficacy than fibrinogen (P<0.001), CEA (P<0.001), CA199 (P<0.001) and CA724 (P<0.001). No significant difference was observed between D-dimer (cutoff, 0.905) and FDP (P=0.158). The AUC of tumor markers combined with coagulation indexes was higher than that without combination (P<0.001). In multiple logistic regression analysis, age, smoking, D-dimer, FDP, CEA, CA19-9, CA72-4 were found to be significantly associated with GC metastasis (all P<0.001, except for smoking P=0.004). We conclude that plasma FDP and D-dimer may be novel clinical biomarkers for screening metastases of GC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, Shaanxi, China
| | - Xuan Wang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, Shaanxi, China
| | - Wenxing Li
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, Shaanxi, China
| | - Chengxue Dang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, Shaanxi, China
| | - Dongmei Diao
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061, Shaanxi, China
| |
Collapse
|
23
|
Coagulation/fibrinolysis and circulating tumor cells in patients with advanced breast cancer. Breast Cancer Res Treat 2022; 192:583-591. [PMID: 35132503 PMCID: PMC8960658 DOI: 10.1007/s10549-021-06484-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
Purpose To evaluate the relationship between circulating tumor cells (CTCs) and standard coagulation tests in both a discovery and a validation cohort of patients with advanced breast cancer. Methods In a retrospective (n = 77) and a prospective (n = 92) study of patients with progressive advanced breast cancer, CTC count, platelet number, fibrinogen level, D-dimers, prothrombin time, and activated partial thromboplastin time were measured. The association between these coagulation studies and CTC count was analyzed. The impact of these measurements on overall survival (OS) was assessed. Results In both cohorts, results were similar; absolute CTC count was significantly associated to D-dimer level and inversely with platelet count. In the prospective cohort, quantification of tumor-derived extracellular vesicles (tdEVs) was associated with CTC count, and with coagulation abnormalities (low platelet count and increased D-dimers). tdEVs did not add to CTC count in predicting changes in platelets or D-dimers. In multivariate analysis only CTC ≥ 5 CTC/7.5 mL, ER status, HER2 status and lines of chemotherapy were associated with OS. In patients with terminally metastatic breast cancer, very high CTC counts are prevalent. Conclusion A significant association exists between increasing CTC number and increased D-dimers and decreased platelet counts, suggesting a potential role for CTCs as a direct contributor of intravascular coagulation activation. In patients with advanced and progressive breast cancer, abnormalities in routine coagulation tests is the rule. In patients with terminally advanced breast cancer a “leukemic” phase with high CTC count is prevalent.
Collapse
|