1
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Harauma A, Enomoto Y, Endo S, Hariya H, Moriguchi T. Omega-3 fatty acids mitigate skin damage caused by ultraviolet-B radiation. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102641. [PMID: 39299174 DOI: 10.1016/j.plefa.2024.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Mice fed a diet containing an adequate amount of ω-3 fatty acids (ω-3 Adq) or a deficient diet (ω-3 Def) were irradiated with ultraviolet-B (UV-B) and were measured daily changes in transepidermal water loss (TEWL). TEWL was significantly increased in ω-3 Def mice with repeated UV-B irradiation, but this increase was significantly reduced in ω-3 Adq mice. The epidermal layers revealed thickening of the spinous and basal layers induced by UV-B irradiation in both groups. Moreover, the ω-3 Def mice had a disturbed epidermal structure and a coarser stratum corneum. And the granule cell layer is significantly reduced, and abnormal layer formation (parakeratosis) occurred in the stratum corneum. These results suggest that continuous UV-B irradiation promotes epidermal turnover and leads to epidermal thickening, but ω-3 fatty acids protect the body from UV-B-induced stress.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yui Enomoto
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Sayaka Endo
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Himeka Hariya
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
3
|
Yang T, Geng F, Tang X, Yu Z, Liu Y, Song B, Tang Z, Wang B, Ye B, Yu D, Zhang S. UV radiation-induced peptides in frog skin confer protection against cutaneous photodamage through suppressing MAPK signaling. MedComm (Beijing) 2024; 5:e625. [PMID: 38919335 PMCID: PMC11196897 DOI: 10.1002/mco2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.
Collapse
Affiliation(s)
- Tingyi Yang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Fenghao Geng
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoyou Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Zuxiang Yu
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Zhihui Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Baoning Wang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Bengui Ye
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital)MianyangChina
| |
Collapse
|
4
|
Mmbando GS. The recent possible strategies for breeding ultraviolet-B-resistant crops. Heliyon 2024; 10:e27806. [PMID: 38509919 PMCID: PMC10950674 DOI: 10.1016/j.heliyon.2024.e27806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The sensitivity of crops to ultraviolet B (UVB, 280-315 nm) radiation varies significantly. Plants' sensitivity to UVB is heavily influenced by the activity of the enzyme cyclobutane pyrimidine dimer (CPD) photolyase, which fixes UVB-induced CPDs. Crops grown in tropical areas with high level of UVB radiation, like O. glaberrima from Africa and O. sativa ssp. indica rice from Bengal, are more sensitive to UVB radiation and could suffer more as a result of rising UVB levels on the earth's surface. Therefore, creating crops that can withstand high UVB is crucial in tropical regions. There is, however, little information on current techniques for breeding UVB-resistant plants. The most recent techniques for producing UVB-resistant crops are presented in this review. The use of DNA methylation, boosting the antioxidant system, regulating the expression of micro-RNA396, and overexpressing CPD photolyase in transgenic plants are some of the methods that are discussed. CPD photolyase overexpression in transgenic plants is the most popular technique for producing UVB-resistant rice. The study also offers several strategies for creating UVB-resistant plants using gene editing techniques. To feed the world's rapidly expanding population, researchers can use the information from this study to improve food production.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma P. O. BOX 259, Dodoma, Tanzania
| |
Collapse
|
5
|
González S, Gill M, Juarranz Á. Introduction to the Special Issue on "Keratinocyte Carcinomas: Biology and Evolving Non-Invasive Management Paradigms". Cancers (Basel) 2023; 15:cancers15082325. [PMID: 37190253 DOI: 10.3390/cancers15082325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Keratinocyte carcinomas (KCs) are the most prevalent form of cancer worldwide, and their incidence is rising dramatically, with an increasing trend in recent years [...].
Collapse
Affiliation(s)
- Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
| | - Melissa Gill
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, 17176 Stockholm, Sweden
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Bromfield JI, Hugenholtz P, Frazer IH, Khosrotehrani K, Chandra J. Targeting Staphylococcus aureus dominated skin dysbiosis in actinic keratosis to prevent the onset of cutaneous squamous cell carcinoma: Outlook for future therapies? Front Oncol 2023; 13:1091379. [PMID: 36816953 PMCID: PMC9933124 DOI: 10.3389/fonc.2023.1091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) and its premalignant precursor, actinic keratosis (AK), present a global health burden that is continuously increasing despite extensive efforts to promote sun safety. Chronic UV exposure is a recognized risk factor for the development of AK and cSCC. However, increasing evidence suggests that AK and cSCC is also associated with skin microbiome dysbiosis and, in particular, an overabundance of the bacterium Staphylococcus aureus (S. aureus). Studies have shown that S. aureus-derived toxins can contribute to DNA damage and lead to chronic upregulation of proinflammatory cytokines that may affect carcinogenesis. Eradication of S. aureus from AK lesions and restoration of a healthy microbiome may therefore represent a therapeutic opportunity to alter disease progression. Whilst antibiotics can reduce the S. aureus load, antibiotic resistant S. aureus pose an increasing global public health threat. The use of specific topically delivered probiotics has been used experimentally in other skin conditions to restore eubiosis, and could therefore also present a non-invasive treatment approach to decrease S. aureus colonization and restore a healthy skin microbiome on AK lesions. This article reviews mechanisms by which S. aureus may contribute to cutaneous carcinogenesis, and discusses hypotheses and theories that explore the therapeutic potential of specific bacterial species which compete with S. aureus in an attempt to restore microbial eubiosis in skin.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ian Hector Frazer
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Janin Chandra
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Chen Z, Dong Y, Huang X. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. STRESS BIOLOGY 2022; 2:51. [PMID: 37676395 PMCID: PMC10441900 DOI: 10.1007/s44154-022-00076-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023]
Abstract
Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth's surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Yi F, Yang XX, Yang RY, Zhao MM, Dong YM, Li L, He YF, Guo MM, Li J, Zhang XH, Lu Z, Gu J, Bao JL, Meng H. A cross-sectional study of Chinese women facial skin status with environmental factors and individual lifestyles. Sci Rep 2022; 12:18110. [PMID: 36302888 PMCID: PMC9613773 DOI: 10.1038/s41598-022-23001-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2022] Open
Abstract
Geographical, environmental and pollution conditions affect facial skin health, but their effects on skin appearance have not been elucidated. This study aimed to describe the skin barrier and skin tone characteristics of Chinese subjects according to lifestyle and environmental conditions using in vitro measurements. In total, 1092 women aged 22-42 years were recruited from 7 representative Chinese cities. Eight skin parameters (hydration, sebum, pH, transdermal water loss, individual type angle, melanin index, erythema index, yellowness) were measured using noninvasive instruments; individual lifestyle data were also collected. Data on four meteorological factors (air temperature, relative humidity, sunshine duration, wind speed) and seven air pollution indicators (air quality index, fine particulate matter, breathable particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide and ozone) were collected in each city from the China Meteorological Administration. Facial skin characteristics differed significantly between cities. Facial skin barrier characteristics and skin tones showed regional differences, with a better skin barrier associated with the western region, as indicated by high skin hydration and sebum secretion and a low pH value. According to the value of transdermal water loss, lighter and darker skin tones were found in the western and southern regions, respectively. Environmental conditions affected facial skin status. Air pollution induced facial skin issues, with fine particulate matter and nitrogen dioxide contributing the most. Individual lifestyles affected the facial skin barrier and skin tone.
Collapse
Affiliation(s)
- Fan Yi
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Xiao-xiao Yang
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Ru-ya Yang
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Meng-meng Zhao
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yin-mao Dong
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Li Li
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yi-fan He
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Miao-miao Guo
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Jing Li
- Eviskin Cosmetics Technology (Beijing) Co., Ltd., Beijing, People’s Republic of China
| | - Xiao-hui Zhang
- Eviskin Cosmetics Technology (Beijing) Co., Ltd., Beijing, People’s Republic of China
| | - Zhi Lu
- Shanghai Inoherb Cosmetic Co., Ltd., Shanghai, People’s Republic of China
| | - Jie Gu
- Shanghai Inoherb Cosmetic Co., Ltd., Shanghai, People’s Republic of China
| | - Jing-lin Bao
- Shanghai Inoherb Cosmetic Co., Ltd., Shanghai, People’s Republic of China
| | - Hong Meng
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China
| |
Collapse
|