1
|
Liu Y, Deng S, Sun L, He H, Zhou Q, Fan H, Yang C, Yang J. Compound sophorae decoction mitigates DSS-induced ulcerative colitis by activating autophagy through PI3K-AKT pathway: A integrative research combining network pharmacology and in vivo animal model validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118885. [PMID: 39369920 DOI: 10.1016/j.jep.2024.118885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound sophora decoction (CSD), a widely used Chinese herbal formula, has been shown to effectively alleviate symptoms ulcerative colitis (UC), including of bloody diarrhea, tenesmus, abdominal pain, and fever. Despite its clinical use, the precise pharmacological mechanisms of CSD remain enigmatic. AIM OF THE STUDY This study aims to investigate the potential efficacy and underlying mechanisms of CSD in the treatment of UC by employing an integrative pharmacology-based approach, molecular docking analysis and experimental validation. MATERIALS AND METHODS In this study, an integrative pharmacology-based approach was employed to predict the primary pathway through which CSD treats UC. The mechanism of CSD was further validated using a DSS-induced UC mouse model. Disease severity was assessed by monitoring stool property, body weight, colon length, and colon histopathology. Colonic pathological changes were examined using hematoxylin and eosin (HE) staining. The concentration of cytokines was measured via ELISA, while key molecules in the PI3K-AKT pathway and autophagy-related markers were evaluated using Western blotting. Autophagy in intestinal epithelial cells was observed using electron microscopy. RESULTS The results demonstrated that CSD alleviated DSS-induced UC by inhibiting the activation of PI3K-AKT pathway, reducing the release of inflammatory cytokines, down-regulating oxidative mediators, and enhancing autophagy. Moreover, the protective effects of CSD were diminished by bpV, a PTEN inhibitor, further supporting the involvement of the PI3K-AKT pathway. CONCLUSIONS The underlying mechanism of CSD's therapeutic effect on UC may involve significant attenuation of DSS-induced intestinal inflammation by promoting autophagy through the inhibition of PI3K-AKT pathway activation.
Collapse
Affiliation(s)
- Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lieqian Sun
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaoli Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China.
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
3
|
Mao N, Xie X. Mechanisms of Tripterygium wilfordii Hook F on treating rheumatoid arthritis explored by network pharmacology analysis and molecular docking. Open Med (Wars) 2024; 19:20240967. [PMID: 38841174 PMCID: PMC11151399 DOI: 10.1515/med-2024-0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory and disabling disease that imposes significant economic and social costs. Tripterygium wilfordii Hook F (TwHF) has a long history of use in traditional Chinese medicine for treating joint disorders, and it has been shown to be cost-effective in treating RA, but its exact mechanism is unknown. Objective The goal of the network pharmacology analysis and molecular docking was to investigate the potential active compounds and associated anti-RA mechanisms of TwHF. Methods TCMSP and UniProt databases were searched for active compounds and related targets of TwHF. PharmGKB, DrugBank, OMIM, TTD, and the Human Gene Databases were used to identify RA-related targets. The intersected RA and TwHF targets were entered into the STRING database to create a protein-protein interaction network. R software was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking technology was used to analyze the optimal effective components from TwHF for docking with the selected target gene. Results Following screening and duplicate removal, a total of 51 active compounds and 96 potential targets were chosen. The PPI network revealed that the target proteins are CXCL8, CXCL6, STAT3, STAT1, JUN, PPARG, TP53, IL14, MMP9, VEGFA, RELA, CASP3, PTGS2, IFNG, AKT1, FOS, ICAM1, and MAPK14. The results of the GO enrichment analysis focused primarily on the response to lipopolysaccharide, the response to molecules of bacterial origin, and the response to drugs. The KEGG results indicated that the mechanisms were closely related to lipid and atherosclerosis, chemical carcinogenesis-receptor activation, Kaposi sarcoma-associated, herpesvirus infection, hepatitis B, fluid shear stress and atherosclerosis, IL-17 signaling pathways, Th17-cell differentiation, and so on, all of which are involved in angiogenesis, immune cell chemotaxis, and inflammatory responses. Molecular docking results suggested that triptolide was the appropriate PTGS1, PTGS2, and TNF inhibitors. Conclusion Our findings provide an essential role and basis for further immune inflammatory studies into the molecular mechanisms of TwHF and PTGS1, PTGS2, and TNF inhibitor development in RA.
Collapse
Affiliation(s)
- Ni Mao
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Xi Xie
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
4
|
Su H, Peng C, Liu Y. Regulation of ferroptosis by PI3K/Akt signaling pathway: a promising therapeutic axis in cancer. Front Cell Dev Biol 2024; 12:1372330. [PMID: 38562143 PMCID: PMC10982379 DOI: 10.3389/fcell.2024.1372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The global challenge posed by cancer, marked by rising incidence and mortality rates, underscores the urgency for innovative therapeutic approaches. The PI3K/Akt signaling pathway, frequently amplified in various cancers, is central in regulating essential cellular processes. Its dysregulation, often stemming from genetic mutations, significantly contributes to cancer initiation, progression, and resistance to therapy. Concurrently, ferroptosis, a recently discovered form of regulated cell death characterized by iron-dependent processes and lipid reactive oxygen species buildup, holds implications for diseases, including cancer. Exploring the interplay between the dysregulated PI3K/Akt pathway and ferroptosis unveils potential insights into the molecular mechanisms driving or inhibiting ferroptotic processes in cancer cells. Evidence suggests that inhibiting the PI3K/Akt pathway may sensitize cancer cells to ferroptosis induction, offering a promising strategy to overcome drug resistance. This review aims to provide a comprehensive exploration of this interplay, shedding light on the potential for disrupting the PI3K/Akt pathway to enhance ferroptosis as an alternative route for inducing cell death and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xinyi, China
| | - Chao Peng
- Xingyi People’s Hospital, Xinyi, China
| | - Yang Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Pellegrino M, Secli V, D’Amico S, Petrilli LL, Caforio M, Folgiero V, Tumino N, Vacca P, Vinci M, Fruci D, de Billy E. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front Immunol 2024; 15:1356321. [PMID: 38420122 PMCID: PMC10899349 DOI: 10.3389/fimmu.2024.1356321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valerio Secli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Silvia D’Amico
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Matteo Caforio
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valentina Folgiero
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Doriana Fruci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
6
|
Shirley CA, Chhabra G, Amiri D, Chang H, Ahmad N. Immune escape and metastasis mechanisms in melanoma: breaking down the dichotomy. Front Immunol 2024; 15:1336023. [PMID: 38426087 PMCID: PMC10902921 DOI: 10.3389/fimmu.2024.1336023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Melanoma is one of the most lethal neoplasms of the skin. Despite the revolutionary introduction of immune checkpoint inhibitors, metastatic spread, and recurrence remain critical problems in resistant cases. Melanoma employs a multitude of mechanisms to subvert the immune system and successfully metastasize to distant organs. Concerningly, recent research also shows that tumor cells can disseminate early during melanoma progression and enter dormant states, eventually leading to metastases at a future time. Immune escape and metastasis have previously been viewed as separate phenomena; however, accumulating evidence is breaking down this dichotomy. Recent research into the progressive mechanisms of melanoma provides evidence that dedifferentiation similar to classical epithelial to mesenchymal transition (EMT), genes involved in neural crest stem cell maintenance, and hypoxia/acidosis, are important factors simultaneously involved in immune escape and metastasis. The likeness between EMT and early dissemination, and differences, also become apparent in these contexts. Detailed knowledge of the mechanisms behind "dual drivers" simultaneously promoting metastatically inclined and immunosuppressive environments can yield novel strategies effective in disabling multiple facets of melanoma progression. Furthermore, understanding progression through these drivers may provide insight towards novel treatments capable of preventing recurrence arising from dormant dissemination or improving immunotherapy outcomes.
Collapse
Affiliation(s)
- Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Deeba Amiri
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
- William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
7
|
Skariah N, James OJ, Swamy M. Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes. DISCOVERY IMMUNOLOGY 2024; 3:kyae002. [PMID: 38405398 PMCID: PMC10883678 DOI: 10.1093/discim/kyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.
Collapse
Affiliation(s)
- Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
8
|
Ruella M, Korell F, Porazzi P, Maus MV. Mechanisms of resistance to chimeric antigen receptor-T cells in haematological malignancies. Nat Rev Drug Discov 2023; 22:976-995. [PMID: 37907724 PMCID: PMC10965011 DOI: 10.1038/s41573-023-00807-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor (CAR)-T cells have recently emerged as a powerful therapeutic approach for the treatment of patients with chemotherapy-refractory or relapsed blood cancers, including acute lymphoblastic leukaemia, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma and multiple myeloma. Nevertheless, resistance to CAR-T cell therapies occurs in most patients. In this Review, we summarize the resistance mechanisms to CAR-T cell immunotherapy by analysing CAR-T cell dysfunction, intrinsic tumour resistance and the immunosuppressive tumour microenvironment. We discuss current research strategies to overcome multiple resistance mechanisms, including optimization of the CAR design, improvement of in vivo T cell function and persistence, modulation of the immunosuppressive tumour microenvironment and synergistic combination strategies.
Collapse
Affiliation(s)
- Marco Ruella
- Division of Hematology and Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Korell
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Chaudagar K, Hieromnimon HM, Kelley A, Labadie B, Shafran J, Rameshbabu S, Drovetsky C, Bynoe K, Solanki A, Markiewicz E, Fan X, Loda M, Patnaik A. Suppression of Tumor Cell Lactate-generating Signaling Pathways Eradicates Murine PTEN/p53-deficient Aggressive-variant Prostate Cancer via Macrophage Phagocytosis. Clin Cancer Res 2023; 29:4930-4940. [PMID: 37721526 PMCID: PMC10841690 DOI: 10.1158/1078-0432.ccr-23-1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Phosphatase and tensin homolog (PTEN) loss-of-function/PI3K pathway hyperactivation is associated with poor therapeutic outcomes and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies in Pb-Cre;PTENfl/flTrp53fl/fl genetically engineered mice (GEM) with aggressive-variant prostate cancer (AVPC) demonstrated tumor growth control in 60% mice following androgen deprivation therapy/PI3K inhibitor (PI3Ki)/programmed cell death protein 1 (PD-1) antibody combination, via abrogating lactate cross-talk between cancer cells and tumor-associated macrophages (TAM), and suppression of histone lactylation (H3K18lac)/phagocytic activation within TAM. Here, we targeted immunometabolic mechanism(s) of PI3Ki resistance, with the goal of durable tumor control in AVPC. EXPERIMENTAL DESIGN Pb-Cre;PTENfl/flTrp53fl/fl GEM were treated with PI3Ki (copanlisib), MEK inhibitor (trametinib) or Porcupine inhibitor (LGK'974) singly or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ex vivo coculture mechanistic studies were performed on GEM tumors or corresponding tumor-derived cell lines. RESULTS Given our proteomic profiling showing persistent MEK signaling within tumors of PI3Ki-resistant GEM, we tested whether addition of trametinib to copanlisib enhances tumor control in GEM, and we observed 80% overall response rate via additive suppression of lactate within TME and H3K18lac within TAM, relative to copanlisib (37.5%) monotherapy. The 20% resistant mice demonstrated feedback Wnt/β-catenin activation, resulting in restoration of lactate secretion by tumor cells and H3K18lac within TAM. Cotargeting Wnt/β-catenin signaling with LGK'974 in combination with PI3Ki/MEKi, demonstrated durable tumor control in 100% mice via H3K18lac suppression and complete TAM activation. CONCLUSIONS Abrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Kiranj Chaudagar
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Hanna M. Hieromnimon
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne Kelley
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Brian Labadie
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jordan Shafran
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Srikrishnan Rameshbabu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Catherine Drovetsky
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaela Bynoe
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL, USA
| | | | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago IL, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Reyes A, Siddiqi T. Targeting BCL2 pathways in CLL: a story of resistance and ingenuity. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:828-837. [PMID: 38263980 PMCID: PMC10804389 DOI: 10.20517/cdr.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is common amongst leukemic malignancies, prompting dedicated investigation throughout the years. Over the last decade, the treatment for CLL has significantly advanced with agents targeting B-cell lymphoma 2 (BCL2), Bruton's tyrosine kinase, and CD20. Single agents or combinations of these targets have proven efficacy. Unfortunately, resistance to one or multiple of the new treatment targets develops. Our review investigates various mechanisms of resistance to BCL2 inhibitors, including mutations in BCL2, alterations in the Bcl protein pathway, epigenetic modifications, genetic heterogeneity, Richter transformation, and alterations in oxidative phosphorylation. Additionally, the review will discuss potential avenues to overcome this resistance with novel agents such as bispecific antibodies, Bruton's tyrosine kinase (BTK) degraders, non-covalent BTK inhibitors, and chimeric antigen receptor T (CART).
Collapse
Affiliation(s)
- Amanda Reyes
- Hematology & Oncology, City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
11
|
Islam M, Jones S, Ellis I. Role of Akt/Protein Kinase B in Cancer Metastasis. Biomedicines 2023; 11:3001. [PMID: 38002001 PMCID: PMC10669635 DOI: 10.3390/biomedicines11113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-related mortalities result from metastatic disease that is resistant to current therapies. Cell migration and invasion are the first steps of the metastasis process, which mainly occurs by two important biological mechanisms, i.e., cytoskeletal remodelling and epithelial to mesenchymal transition (EMT). Akt (also known as protein kinase B) is a central signalling molecule of the PI3K-Akt signalling pathway. Aberrant activation of this pathway has been identified in a wide range of cancers. Several studies have revealed that Akt actively engages with the migratory process in motile cells, including metastatic cancer cells. The downstream signalling mechanism of Akt in cell migration depends upon the tumour type, sites, and intracellular localisation of activated Akt. In this review, we focus on the role of Akt in the regulation of two events that control cell migration and invasion in various cancers including head and neck squamous cell carcinoma (HNSCC) and the status of PI3K-Akt pathway inhibitors in clinical trials in metastatic cancers.
Collapse
Affiliation(s)
- Mohammad Islam
- Unit of Cell and Molecular Biology, School of Dentistry, University of Dundee, Park Place, Dundee DD1 4HR, UK; (S.J.); (I.E.)
| | | | | |
Collapse
|
12
|
Militaru FC, Militaru V, Crisan N, Bocsan IC, Udrea AA, Catana A, Kutasi E, Militaru MS. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. BIOMOLECULES & BIOMEDICINE 2023; 23:760-771. [PMID: 37021836 PMCID: PMC10494850 DOI: 10.17305/bb.2023.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer is one of the most significant causes of morbidity and mortality in male patients. The incidence increases with age, and it is higher among African Americans. The occurrence of prostate cancer is associated with many risk factors, including genetic and hereditary predisposition. The most common genetic syndromes associated with prostate cancer risk are BRCA-associated hereditary breast and ovarian cancer (HBOC) and Lynch syndrome. Local-regional therapy, i.e., surgery is beneficial in early-stage prostate cancer management. Advanced and metastatic prostate cancers require systemic therapies, including hormonal inhibition, chemotherapy, and targeted agents. Most prostate cancers can be treated by targeting the androgen-receptor pathway and decreasing androgen production or binding to androgen receptors (AR). Castration-resistant prostate cancer (CRPC) usually involves the PI3K/AKT/mTOR pathway and requires targeted therapy. Specific molecular therapy can target mutated cell lines in which DNA defect repair is altered, caused by mutations of BRCA2, partner and localizer of BRCA2 (PALB2), and phosphatase and tensin homolog (PTEN) or the transmembrane protease serine 2-ERG (TMPRSS2-ERG) fusion. Most benefits were demonstrated in cyclin dependent-kinase 12 (CDK12) mutated cell lines when treated with anti-programmed cell death protein 1 (PD1) therapy. Therapies targeting p53 and AKT are the subject of ongoing clinical trials. Many genetic defects are listed as diagnostic, prognostic, and clinically actionable markers in prostate cancer. Androgen receptor splice variant 7 (AR-V7) is an important oncogenic driver and an early diagnostic and prognostic marker, as well as a therapeutic target in hormone-resistant CRPC. This review summarizes the pathophysiological mechanisms and available targeted therapies for prostate cancer.
Collapse
Affiliation(s)
- Florentina Claudia Militaru
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Medisprof Cancer Center, Cluj-Napoca, Romania
| | - Valentin Militaru
- Medisprof Cancer Center, Cluj-Napoca, Romania
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Clinical County Hospital, Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea Catana
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Institute of Oncology I. Chiricuta, Cluj-Napoca, Romania
| | - Eniko Kutasi
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mariela Sanda Militaru
- Department of Molecular Sciences, Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Zhang L, Cao L, Li S, Wang L, Song Y, Huang Y, Xu Z, He J, Wang M, Li K. Biologically Interpretable Deep Learning To Predict Response to Immunotherapy In Advanced Melanoma Using Mutations and Copy Number Variations. J Immunother 2023; 46:221-231. [PMID: 37220017 DOI: 10.1097/cji.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Only 30-40% of advanced melanoma patients respond effectively to immunotherapy in clinical practice, so it is necessary to accurately identify the response of patients to immunotherapy pre-clinically. Here, we develop KP-NET, a deep learning model that is sparse on KEGG pathways, and combine it with transfer- learning to accurately predict the response of advanced melanomas to immunotherapy using KEGG pathway-level information enriched from gene mutation and copy number variation data. The KP-NET demonstrates best performance with AUROC of 0.886 on testing set and 0.803 on an unseen evaluation set when predicting responders (CR/PR/SD with PFS ≥6 mo) versus non-responders (PD/SD with PFS <6 mo) in anti-CTLA-4 treated melanoma patients. The model also achieves an AUROC of 0.917 and 0.833 in predicting CR/PR versus PD, respectively. Meanwhile, the AUROC is 0.913 when predicting responders versus non-responders in anti-PD-1/PD-L1 melanomas. Moreover, the KP-NET reveals some genes and pathways associated with response to anti-CTLA-4 treatment, such as genes PIK3CA, AOX1 and CBLB, and ErbB signaling pathway, T cell receptor signaling pathway, et al. In conclusion, the KP-NET can accurately predict the response of melanomas to immunotherapy and screen related biomarkers pre-clinically, which can contribute to precision medicine of melanoma.
Collapse
Affiliation(s)
- Liuchao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chaudagar K, Hieromnimon HM, Kelley A, Labadie B, Shafran J, Rameshbabu S, Drovetsky C, Bynoe K, Solanki A, Markiewicz E, Fan X, Loda M, Patnaik A. Suppression of tumor cell lactate-generating signaling pathways eradicates murine PTEN/p53-deficient aggressive-variant prostate cancer via macrophage phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.540590. [PMID: 37292972 PMCID: PMC10245812 DOI: 10.1101/2023.05.23.540590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose PTEN loss-of-function/PI3K pathway hyperactivation occurs in ∼50% of metastatic, castrate-resistant prostate cancer patients, resulting in poor therapeutic outcomes and resistance to immune checkpoint inhibitors across multiple malignancies. Our prior studies in prostate-specific PTEN/p53-deleted genetically engineered mice (Pb-Cre;PTEN fl/fl Trp53 fl/fl GEM) with aggressive-variant prostate cancer (AVPC) demonstrated feedback Wnt/β-catenin signaling activation in 40% mice resistant to androgen deprivation therapy (ADT)/PI3K inhibitor (PI3Ki)/PD-1 antibody (aPD-1) combination, resulting in restoration of lactate cross-talk between tumor-cells and tumor-associated macrophages (TAM), histone lactylation (H3K18lac) and phagocytic suppression within TAM. Here, we targeted immunometabolic mechanism(s) of resistance to ADT/PI3Ki/aPD-1 combination, with the goal of durable tumor control in PTEN/p53-deficient PC. Experimental design Pb-Cre;PTEN fl/fl Trp53 fl/fl GEM were treated with either ADT (degarelix), PI3Ki (copanlisib), aPD-1, MEK inhibitor (trametinib) or Porcupine inhibitor (LGK 974) as single agents or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ ex vivo co-culture mechanistic studies were performed on prostate tumors or established GEM-derived cell lines. Results We tested whether Wnt/β-catenin pathway inhibition with LGK 974 addition to degarelix/copanlisib/aPD-1 therapy enhances tumor control in GEM, and observed de novo resistance due to feedback activation of MEK signaling. Based on our observation that degarelix/aPD-1 treatment resulted in partial inhibition of MEK signaling, we substituted trametinib for degarelix/aPD-1 treatment, and observed a durable tumor growth control of PI3Ki/MEKi/PORCNi in 100% mice via H3K18lac suppression and complete TAM activation within TME. Conclusions Abrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials. STATEMENT OF TRANSLATIONAL RELEVANCE PTEN loss-of-function occurs in ∼50% of mCRPC patients, and associated with poor prognosis, and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies have demonstrated that ADT/PI3Ki/PD-1 triplet combination therapy controls PTEN/p53-deficient PC in 60% of mice via enhancement of TAM phagocytosis. Here, we discovered that resistance to ADT/PI3K/PD-1 therapy occurred via restoration of lactate production via feedback Wnt/MEK signaling following treatment with PI3Ki, resulting in inhibition of TAM phagocytosis. Critically, co-targeting of PI3K/MEK/Wnt signaling pathways using an intermittent dosing schedule of corresponding targeted agents resulted in complete tumor control and significantly prolonged survival without significant long-term toxicity. Collectively, our findings provide "proof-of-concept" that targeting lactate as a macrophage phagocytic checkpoint controls growth of murine PTEN/p53-deficient PC and warrant further investigation in AVPC clinical trials.
Collapse
Affiliation(s)
- Kiranj Chaudagar
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Hanna M. Hieromnimon
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne Kelley
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Brian Labadie
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jordan Shafran
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Srikrishnan Rameshbabu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Catherine Drovetsky
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaela Bynoe
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL, USA
| | | | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago IL, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Zhou M, Tan W, Hasimu H, Liu J, Gu Z, Zhao J. Euphorbium total triterpenes improve Freund's complete adjuvant-induced arthritis through PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116146. [PMID: 36610673 DOI: 10.1016/j.jep.2023.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbium is the resinous secretion of Euphorbia resinifera Berg. According to the record, Euphorbium was first used by Roman doctors to treat the emperor's joint pain. In China, it is applied in folk medicine to treat damp-cold or mucous diseases, such as arthralgia and ascites, etc. This herb is used for rheumatoid arthritis and skin tumors in the folklore of northeastern Brazil. Triterpenes are mainly characteristic constituents of Euphorbium, and possibly possess anti-rheumatoid arthritis. AIM OF THE STUDY To explore the preventive effect of Euphorbium total triterpenes (TTE) on Freund's complete adjuvant (FCA) induced arthritis in rats and its mechanism. MATERIAL AND METHODS TTE was extracted and isolated from Euphorbium, and its components were analyzed by HPLC. The safety of TTE was evaluated by an acute toxicity test in mice. Arthritis was induced in rats by injecting 0.2 mL FCA into the right hind paw toe, except for the control group, which was given the same volume of physiological saline. Tripterygium Glycosides (TG, 7.5 mg/kg) and TTE (32, 64 and 128 mg/kg) were administered by gavage for 30 days. Body weights, paw swelling, and arthritic scores were measured during the experiment process. After 30 days, blood and joints were harvested to determine various indicators of arthritis. RESULTS The contents of euphol and euphorbol in TTE were 47.03% and 18.77% respectively, and the maximal feasible dose of TTE in mice is 12 g/kg. The experimental results showed that arthritis indicators in rats deteriorated after FCA inducement compared with the control group. After treatment with TTE, the swelling degree and histopathological change of the hind paws in rats were significantly improved as well as arthritic score; the serum TNF-α, CRP, IL-1β, IL-6, IL-18 and RF levels in rats were significantly reduced; The expression of PI3K, AKT, P-AKT, Bcl-2, NF-κB, NLRP3 and Pro-caspase-1 protein in joint tissue were down-regulated, and the expression of Bax protein was up-regulated. CONCLUSION The results suggested that TTE possessed anti-arthritis effects, and its mechanism may be related to its anti-inflammatory and immunomodulatory properties, as well as regulation of PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Maojie Zhou
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Wei Tan
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Hamulati Hasimu
- Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Jing Liu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830013, China.
| | - Zhengyi Gu
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Jun Zhao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| |
Collapse
|
16
|
Rebuzzi SE, Brunelli M, Galuppini F, Vellone VG, Signori A, Catalano F, Damassi A, Gaggero G, Rescigno P, Maruzzo M, Merler S, Vignani F, Cavo A, Basso U, Milella M, Panepinto O, Mencoboni M, Sbaraglia M, Dei Tos AP, Murianni V, Cremante M, Llaja Obispo MA, Maffezzoli M, Banna GL, Buti S, Fornarini G. Characterization of Tumor and Immune Tumor Microenvironment of Primary Tumors and Metastatic Sites in Advanced Renal Cell Carcinoma Patients Based on Response to Nivolumab Immunotherapy: Preliminary Results from the Meet-URO 18 Study. Cancers (Basel) 2023; 15:cancers15082394. [PMID: 37190322 DOI: 10.3390/cancers15082394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Prognostic and predictive factors for patients with metastatic renal cell carcinoma (mRCC) treated with immunotherapy are highly warranted, and the immune tumor microenvironment (I-TME) is under investigation. METHODS The Meet-URO 18 was a multicentric retrospective study assessing the I-TME in mRCC patients treated with ≥2nd-line nivolumab, dichotomized into responders and non-responders according to progression-free survival (≥12 months and ≤3 months, respectively). The primary objective was to identify differential immunohistochemical (IHC) patterns between the two groups. Lymphocyte infiltration and the expressions of different proteins on tumor cells (CD56, CD15, CD68, and ph-mTOR) were analyzed. The expression of PD-L1 was also assessed. RESULTS A total of 116 tumor tissue samples from 84 patients (59% were primary tumors and 41% were metastases) were evaluated. Samples from responders (N = 55) were significantly associated with lower expression of CD4+ T lymphocytes and higher levels of ph-mTOR and CD56+ compared with samples from non-responders (N = 61). Responders also showed a higher CD3+ expression (p = 0.059) and CD8+/CD4+ ratio (p = 0.084). Non-responders were significantly associated with a higher percentage of clear cell histology and grading. CONCLUSIONS Differential IHC patterns between the tumors in patients who were responders and non-responders to nivolumab were identified. Further investigation with genomic analyses is planned.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, 17100 Savona, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, 16132 Genoa, Italy
| | - Matteo Brunelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37124 Verona, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | | | - Alessio Signori
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, 16132 Genoa, Italy
| | - Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Damassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Gaggero
- Pathology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Rescigno
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marco Maruzzo
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy
| | - Sara Merler
- Section of Oncology, Department of Medicine, University of Verona and Verona University Hospital Trust, 37134 Verona, Italy
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | - Alessia Cavo
- Oncology Unit, Villa Scassi Hospital, 16149 Genoa, Italy
| | - Umberto Basso
- Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona and Verona University Hospital Trust, 37134 Verona, Italy
| | - Olimpia Panepinto
- Division of Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | | | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Veronica Murianni
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Michele Maffezzoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, UK
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
17
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
18
|
Yu Z, Vyungura O, Zhao Y. Molecular subtyping and IMScore based on immune-related pathways, oncogenic pathways, and DNA damage repair pathways for guiding immunotherapy in hepatocellular carcinoma patients. J Gastrointest Oncol 2022; 13:3135-3153. [PMID: 36636061 PMCID: PMC9830348 DOI: 10.21037/jgo-22-1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Although immunotherapy provides hope for advanced HCC patients, the outcomes are not satisfactory and vary by individual case. In this study, we sought to establish novel molecular subtypes and a stable model based on tumor-related pathways for guiding the immunotherapy in HCC patients. Methods A total of 15 pathways including immune pathways, stromal pathways, oncogenic pathways, and DNA damage repair pathways were used to construct molecular subtypes through consensus clustering. Immune characteristics, gene mutations, and genomic alterations including copy number variations and homologous recombination deficiency (HRD) were analyzed in different clusters. The Tumor Immune Dysfunction and Exclusion (TIDE) framework was used to predict the response to immunotherapy. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression were employed to screen prognostic genes for constructing a risk model. Results Three clusters/subtypes were constructed including Immune-E, Immune-D and Stromal-E. Immune-D had the worst prognosis and high enrichment of HRD pathways. Immune-E had higher immune infiltration, higher expression of major histocompatibility complex (MHC)-related genes, and higher expression of PD1, PDL1, CTLA4, and LAG3. TP53 alterations frequently occurred in Immune-D. Immune-E had a relatively high response to immunotherapy and was sensitive to chemotherapeutic drugs. Moreover, we constructed an IMScore model that was effective to classify HCC patients into different risk groups, and the IMScore had a better performance than the TIDE score. Conclusions This study revealed the complex interaction among the tumor microenvironment (TME), genomic alterations, and tumor-related pathways by exploring the molecular difference of 3 subtypes. The IMScore model has potential to provide guidance for immunotherapy in HCC patients.
Collapse
|
19
|
Immunoenhancing Effects of Cyclina sinensis Pentadecapeptide through Modulation of Signaling Pathways in Mice with Cyclophosphamide-Induced Immunosuppression. Mar Drugs 2022; 20:md20090560. [PMID: 36135750 PMCID: PMC9505337 DOI: 10.3390/md20090560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Our study aimed to investigate the immune-enhancing mechanism of the pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) in a cyclophosphamide (CTX)-induced murine model of immunosuppression. Our results showed that SCSP treatment significantly increased mouse body weight, immune organ indices, and the production of serum IL-6, IL-1β, and tumor necrosis factor (TNF)-α in CTX-treated mice. In addition, SCSP treatment enhanced the proliferation of splenic lymphocytes and peritoneal macrophages, as well as phagocytosis of the latter in a dose-dependent manner. Moreover, SCSP elevated the phosphorylation levels of p38, ERK, JNK, PI3K and Akt, and up-regulated IKKα, IKKβ, p50 NF-κB and p65 NF-κB protein levels, while down-regulating IκBα protein levels. Our results indicate that SCSP has immune-enhancing activities, and that it can activate the MAPK/NF-κB and PI3K/Akt pathways to enhance immunity in CTX-induced immunosuppressed mice.
Collapse
|
20
|
Novel Systemic Treatment Modalities Including Immunotherapy and Molecular Targeted Therapy for Recurrent and Metastatic Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23147889. [PMID: 35887235 PMCID: PMC9320653 DOI: 10.3390/ijms23147889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancers worldwide. More than half of patients with HNSCC eventually experience disease recurrence and/or metastasis, which can threaten their long-term survival. HNSCCs located in the oral cavity and larynx are usually associated with tobacco and/or alcohol use, whereas human papillomavirus (HPV) infection, particularly HPV16 infection, is increasingly recognized as a cause of oropharyngeal HNSCC. Despite clinical, histologic, and molecular differences between HPV-positive and HPV-negative HNSCCs, current treatment approaches are the same. For recurrent disease, these strategies include chemotherapy, immunotherapy with PD-1-inhibitors, or a monoclonal antibody, cetuximab, that targets epidermal growth factor; these therapies can be administered either as single agents or in combination. However, these treatment strategies carry a high risk of toxic side effects; therefore, more effective and less toxic treatments are needed. The landscape of HNSCC therapy is changing significantly; numerous clinical trials are underway to test novel therapeutic options like adaptive cellular therapy, antibody-drug conjugates, new targeted therapy agents, novel immunotherapy combinations, and therapeutic vaccines. This review helps in understanding the various developments in HNSCC therapy and sheds light on the path ahead in terms of further research in this field.
Collapse
|
21
|
Marhelava K, Krawczyk M, Firczuk M, Fidyt K. CAR-T Cells Shoot for New Targets: Novel Approaches to Boost Adoptive Cell Therapy for B Cell-Derived Malignancies. Cells 2022; 11:1804. [PMID: 35681499 PMCID: PMC9180412 DOI: 10.3390/cells11111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.
Collapse
Affiliation(s)
- Katsiaryna Marhelava
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.M.); (M.K.); (M.F.)
| |
Collapse
|
22
|
Hus I, Puła B, Robak T. PI3K Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Current Status and Future Perspectives. Cancers (Basel) 2022; 14:1571. [PMID: 35326722 PMCID: PMC8945984 DOI: 10.3390/cancers14061571] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) signaling regulates key cellular processes, such as growth, survival and apoptosis. Among the three classes of PI3K, class I is the most important for the development, differentiation and activation of B and T cells. Four isoforms are distinguished within class I (PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ). PI3Kδ expression is limited mainly to the B cells and their precursors, and blocking PI3K has been found to promote apoptosis of chronic lymphocytic leukemia (CLL) cells. Idelalisib, a selective PI3Kδ inhibitor, was the first-in-class PI3Ki introduced into CLL treatment. It showed efficacy in patients with del(17p)/TP53 mutation, unmutated IGHV status and refractory/relapsed disease. However, its side effects, such as autoimmune-mediated pneumonitis and colitis, infections and skin changes, limited its widespread use. The dual PI3Kδ/γ inhibitor duvelisib is approved for use in CLL patients but with similar toxicities to idelalisib. Umbralisib, a highly selective inhibitor of PI3Kδ and casein kinase-1ε (CK1ε), was found to be efficient and safe in monotherapy and in combination regimens in phase 3 trials in patients with CLL. Novel PI3Kis are under evaluation in early phase clinical trials. In this paper we present the mechanism of action, efficacy and toxicities of PI3Ki approved in the treatment of CLL and developed in clinical trials.
Collapse
Affiliation(s)
- Iwona Hus
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.H.); (B.P.)
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.H.); (B.P.)
| | - Tadeusz Robak
- Copernicus Memorial Hospital, 93-510 Lodz, Poland
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| |
Collapse
|
23
|
Tarantelli C, Argnani L, Zinzani PL, Bertoni F. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Cancers (Basel) 2021; 13:5535. [PMID: 34771694 PMCID: PMC8582887 DOI: 10.3390/cancers13215535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The development of small molecules able to block specific or multiple isoforms of phosphoinositide 3-kinases (PI3K) has already been an active field of research for many years in the cancer field. PI3Kδ inhibitors are among the targeted agents most extensively studied for the treatment of lymphoma patients and PI3Kδ inhibitors are already approved by regulatory agencies. More recently, it became clear that the anti-tumor activity of PI3K inhibitors might not be due only to a direct effect on the cancer cells but it can also be mediated via inhibition of the kinases in non-neoplastic cells present in the tumor microenvironment. T-cells represent an important component of the tumor microenvironment and they comprise different subpopulations that can have both anti- and pro-tumor effects. In this review article, we discuss the effects that PI3Kδ inhibitors exert on the immune system with a particular focus on the T-cell compartment.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Lisa Argnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.A.); (P.L.Z.)
- Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, 40138 Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.A.); (P.L.Z.)
- Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi di Bologna, 40138 Bologna, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|