1
|
Nguyen HTM, Das N, Ricks M, Zhong X, Takematsu E, Wang Y, Ruvalcaba C, Mehadji B, Roncali E, Chan CKF, Pratx G. Ultrasensitive and multiplexed tracking of single cells using whole-body PET/CT. SCIENCE ADVANCES 2024; 10:eadk5747. [PMID: 38875333 PMCID: PMC11177933 DOI: 10.1126/sciadv.adk5747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems; however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upward of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a statistical tracking algorithm (PEPT-EM) to achieve a sensitivity of 4 becquerel per cell and a streamlined workflow to reliably label single cells with over 50 becquerel per cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of the method, we tracked the fate of more than 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
Collapse
Affiliation(s)
- Hieu T. M. Nguyen
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Neeladrisingha Das
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Matthew Ricks
- School of Medicine, Department of Radiological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xiaoxu Zhong
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| | - Eri Takematsu
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuting Wang
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Carlos Ruvalcaba
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Brahim Mehadji
- Department of Radiology, University of California, Davis, Davis, CA 95616, USA
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Department of Radiology, University of California, Davis, Davis, CA 95616, USA
| | - Charles K. F. Chan
- School of Medicine, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Guillem Pratx
- School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Larimer BM. PET Imaging for Monitoring Cellular and Immunotherapy of Cancer. Cancer J 2024; 30:153-158. [PMID: 38753749 PMCID: PMC11101150 DOI: 10.1097/ppo.0000000000000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Cancer immunotherapy, including checkpoint blockade and cellular therapy, has become a cornerstone in cancer treatment. However, understanding the factors driving patient response or resistance to these therapies remains challenging. The dynamic interplay between the immune system and tumors requires new approaches for characterization. Biopsies and blood tests provide valuable information, but their limitations have led to increased interest in positron emission tomography (PET)/computed tomography imaging to complement these strategies. The noninvasive nature of PET imaging makes it ideal for monitoring the dynamic tumor immune microenvironment. This review discusses various PET imaging approaches, including immune cell lineage markers, immune functional markers, immune cell metabolism, direct cell labeling, and reporter genes, highlighting their potential in targeted immunotherapies and cell-based approaches. Although PET imaging has limitations, its integration into diagnostic strategies holds promise for improving patient outcomes and accelerating drug development in cancer immunotherapy.
Collapse
Affiliation(s)
- Benjamin M. Larimer
- Department of Radiology. The University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center. The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Oh MS, Lee SG, Lee GH, Kim CY, Song JH, Yu BY, Chung HM. Verification of Therapeutic Effect through Accelerator Mass Spectrometry-Based Single Cell Level Quantification of hESC-Endothelial Cells Distributed into an Ischemic Model. Adv Healthc Mater 2023; 12:e2300476. [PMID: 37068221 DOI: 10.1002/adhm.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Indexed: 04/19/2023]
Abstract
As the potential of pluripotent stem cell-derived differentiated cells has been demonstrated in regenerative medicine, differentiated vascular endothelial cells (ECs) are emerging as a therapeutic agent for the cardiovascular system. To verify the therapeutic efficacy of differentiated ECs in an ischemic model, human embryonic stem cells (hESCs) are induced as EC lineage and produce high-purity ECs through fluorescence-activated cell sorting (FACS). When hESC-ECs are transplanted into a hindlimb ischemic model, it is confirmed that blood flow and muscle regeneration are further improved by creating new blood vessels together with autologous ECs than the primary cell as cord blood endothelial progenitor cells (CB-EPCs). In addition, previously reported studies show the detection of transplanted cells engrafted in blood vessels through various tracking methods, but fail to provide accurate quantitative values over time. In this study, it is demonstrated that hESC-ECs are engrafted approximately sevenfold more than CB-EPCs by using an accelerator mass spectrometry (AMS)-based cell tracking technology that can perform quantification at the single cell level. An accurate quantification index is suggested. It has never been reported in in vivo kinetics of hESC-ECs that can act as therapeutic agents.
Collapse
Affiliation(s)
- Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jong Han Song
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Byung-Yong Yu
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
- Mirae Cell Bio Co. Ltd, Seoul, 04795, Republic of Korea
| |
Collapse
|
4
|
Chudal L, Santelli J, Lux J, Woodward A, Hafeez N, Endsley C, Garland S, Mattrey RF, de Gracia Lux C. In Vivo Ultrasound Imaging of Macrophages Using Acoustic Vaporization of Internalized Superheated Nanodroplets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42413-42423. [PMID: 37650753 DOI: 10.1021/acsami.3c11976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Activating patients' immune cells, either by reengineering them or treating them with bioactive molecules, has been a breakthrough in the field of immunotherapy and has revolutionized treatment, especially against cancer. As immune cells naturally home to tumors or injured tissues, labeling such cells holds promise for non-invasive tracking and biologic manipulation. Our study demonstrates that macrophages loaded with extremely low boiling point perfluorocarbon nanodroplets not only survive ultrasound-induced phase change but also maintain their phagocytic function. Unlike observations made when using higher boiling point perfluorocarbon nanodroplets, our results show that phase change occurs intracellularly at a low mechanical index using a clinical scanner operating within the energy limit set by the Food and Drug Administration (FDA). After nanodroplet-loaded macrophages were given intravenously to nude rats, they were invisible in the liver when imaged at a very low mechanical index using a clinical ultrasound scanner. They became visible when power was increased but still within the FDA limits up to 8 h after administration. The acoustic labeling and in vivo detection of macrophages using a clinical ultrasound scanner represent a paradigm shift in the field of cell tracking and pave the way for potential therapeutic strategies in the clinical setting.
Collapse
Affiliation(s)
- Lalit Chudal
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Julien Santelli
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jacques Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Adam Woodward
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nazia Hafeez
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Connor Endsley
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shea Garland
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Robert F Mattrey
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Caroline de Gracia Lux
- Department of Radiology, Translational Research in Ultrasound Theranostics (TRUST) Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
5
|
Nguyen HT, Das N, Wang Y, Ruvalcaba C, Mehadji B, Roncali E, Chan CK, Pratx G. Efficient and multiplexed tracking of single cells using whole-body PET/CT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554536. [PMID: 37662335 PMCID: PMC10473747 DOI: 10.1101/2023.08.23.554536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems, however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upwards of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a new tracking algorithm (PEPT-EM) to push the cellular detection threshold to below 4 Bq/cell, and a streamlined workflow to reliably label single cells with over 50 Bq/cell of 18F-fluorodeoxyglucose (FDG). To demonstrate the potential of method, we tracked the fate of over 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
Collapse
Affiliation(s)
- Hieu T.M. Nguyen
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| | - Neeladrisingha Das
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| | - Yuting Wang
- Stanford University, School of Medicine, Department of Surgery
| | - Carlos Ruvalcaba
- University of California, Davis, Department of Biomedical Engineering
| | - Brahim Mehadji
- University of California, Davis, Department of Radiology
| | - Emilie Roncali
- University of California, Davis, Department of Biomedical Engineering
- University of California, Davis, Department of Radiology
| | | | - Guillem Pratx
- Stanford University, School of Medicine, Department of Radiation Oncology and Medical Physics
| |
Collapse
|
6
|
Zinzi A, Gaio M, Liguori V, Cagnotta C, Paolino D, Paolisso G, Castaldo G, Nicoletti G, Rossi F, Capuano A, Rafaniello C. Late relapse after CAR-T cell therapy for adult patients with hematologic malignancies: a definite evidence from Systematic Review and Meta-Analysis on individual data. Pharmacol Res 2023; 190:106742. [PMID: 36963592 DOI: 10.1016/j.phrs.2023.106742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Chimeric Antigen Receptor (CAR)-modified T lymphocytes represent one of the most innovative and promising approaches to treating hematologic malignancies. CAR-T cell therapy is currently being used for the treatment of relapsed/refractory (r/r) B-cell malignancies including Acute Lymphoblastic Leukemia, Large B-Cell Lymphoma, Follicular Lymphoma, Multiple Myeloma and Mantle Cell Lymphoma. Despite the unprecedented clinical success, one of the major issues of the approved CAR-T cell therapy - tisagenlecleucel, axicabtagene, lisocabtagene, idecabtagene, ciltacabtagene and brexucabtagene - is the uncertainty about its persistence which in turn could lead to weak or no response to therapy with malignancy recurrence. Here we show that the prognosis of patients who do not respond to CAR-T cell therapy is still an unmet medical need. We performed a systematic review and meta-analysis collecting individual data on Duration of Response from at least 12-month follow-up studies. We found that the pooled prevalence of relapse within the first 12 months after CAR-T infusion was 61% (95% CI, 43%-78%); moreover, one year after the infusion, the analysis highlighted a pooled prevalence of relapse of 24% (95% CI, 11%-42%). Our results suggest that identifying potential predictive biomarkers of response to CAR-T therapy, especially for patients affected by the advanced stage of blood malignancies, could lead to stratification of the eligible population to that therapy, recognizing which patients will benefit and which will not, helping regulators to make decision in that way.
Collapse
Affiliation(s)
- Alessia Zinzi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Gaio
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Liguori
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Cecilia Cagnotta
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa s.n.c., I-88100 Catanzaro, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Gianfranco Nicoletti
- Department of Imaging, University of Campania "Luigi Vanvitelli", Breast Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, Naples, Italy
| | - Francesco Rossi
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy; Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
7
|
Evaluation of different 89Zr-labeled synthons for direct labeling and tracking of white blood cells and stem cells in healthy athymic mice. Sci Rep 2022; 12:15646. [PMID: 36123386 PMCID: PMC9485227 DOI: 10.1038/s41598-022-19953-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022] Open
Abstract
Cell based therapies are evolving as an effective new approach to treat various diseases. To understand the safety, efficacy, and mechanism of action of cell-based therapies, it is imperative to follow their biodistribution noninvasively. Positron-emission-tomography (PET)-based non-invasive imaging of cell trafficking offers such a potential. Herein, we evaluated and compared three different ready-to-use direct cell radiolabeling synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA for PET imaging-based trafficking of white blood cells (WBCs) and stem cells (SCs) up to 7 days in athymic nude mice. We compared the degree of 89Zr complexation and percentage of cell radiolabeling efficiencies with each. All three synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA, were successfully prepared, and used for radiolabeling of WBCs and SCs. The highest cell radiolabeling yield was found for [89Zr]Zr-DFO-Bn-NCS, followed by [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA. In terms of biodistribution, WBCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS, were primarily accumulated in liver and spleen, whereas SCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS were found in lung, liver and spleen. A high bone uptake was observed for both WBCs and SCs radiolabeled with [89Zr]Zr-Hy3ADA5-SA, suggesting in-vivo instability of [89Zr]Zr-Hy3ADA5-SA synthon. This study offers an appropriate selection of ready-to-use radiolabeling synthons for noninvasive trafficking of WBCs, SCs and other cell-based therapies.
Collapse
|
8
|
Abstract
MRI is a widely available clinical tool for cancer diagnosis and treatment monitoring. MRI provides excellent soft tissue imaging, using a wide range of contrast mechanisms, and can non-invasively detect tissue metabolites. These approaches can be used to distinguish cancer from normal tissues, to stratify tumor aggressiveness, and to identify changes within both the tumor and its microenvironment in response to therapy. In this review, the role of MRI in immunotherapy monitoring will be discussed and how it could be utilized in the future to address some of the unique clinical questions that arise from immunotherapy. For example, MRI could play a role in identifying pseudoprogression, mixed response, T cell infiltration, cell tracking, and some of the characteristic immune-related adverse events associated with these agents. The factors to be considered when developing MRI imaging biomarkers for immunotherapy will be reviewed. Finally, the advantages and limitations of each approach will be discussed, as well as the challenges for future clinical translation into routine clinical care. Given the increasing use of immunotherapy in a wide range of cancers and the ability of MRI to detect the microstructural and functional changes associated with successful response to immunotherapy, the technique has great potential for more widespread and routine use in the future for these applications.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pippa G Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
9
|
Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int J Mol Sci 2022; 23:ijms23158443. [PMID: 35955578 PMCID: PMC9368793 DOI: 10.3390/ijms23158443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.
Collapse
|
10
|
Lian X, Scott-Thomas A, Lewis JG, Bhatia M, MacPherson SA, Zeng Y, Chambers ST. Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23105563. [PMID: 35628374 PMCID: PMC9146623 DOI: 10.3390/ijms23105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as “possible” or “probable” cases but not “proven”. Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Department of Medical Imaging, The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Steroid and Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - Sean A. MacPherson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Haematology Department, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China;
| | - Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Correspondence: ; Tel.: +64-3-364-0649
| |
Collapse
|
11
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|