1
|
Liu S, Wu Z, Yang T, Xu J, Aishan S, Qin E, Ma K, Liu J, Qin R, Wang J, Tie J, Liu H. The Chrysosplenium sinicum genome provides insights into adaptive evolution of shade plants. Commun Biol 2024; 7:1004. [PMID: 39152309 PMCID: PMC11329650 DOI: 10.1038/s42003-024-06701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Chrysosplenium sinicum, a traditional Tibetan medicinal plant, can successfully thrive in low-light environments for long periods of time. To investigate the adaptive evolution of shade plants in low-light environments, we generated a chromosome-scale genome assembly (~320 Mb) for C. sinicum by combining PacBio sequencing and Hi-C technologies. Based on our results, gene families related to photosynthesis and cell respiration greatly expanded and evolved in C. sinicum genome due to intracellular DNA transfer from organelle genome to nuclear genome. Under positive selective pressure, adaptive evolution of light-harvesting complex II (LHCII) component protein CsLhcb1s resulted in the expansion of threonine residues at the phosphorylation site of STN7 kinase, potentially establishing a crucial genomic foundation for enhancing C. sinicum's adaptability in low-light environments. Through transcriptome and metabolome analysis, we identified chrysosplenol and chrysosplenoside as predominant flavonoid metabolites of C. sinicum and predicted their synthesis pathways. In addition, analysis of alternative splicing (AS) revealed that AS events help regulate state transition and flavonoid biosynthesis. The present study provides new insights into the genomes of shade plants exposed to low-light conditions and adaptive evolution of these genomes; in addition, the results improve our current knowledge on the biosynthetic and regulatory processes of chrysosplenol and chrysosplenoside.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiangqing Wang
- College of Computer Science, South-Central Minzu University, Wuhan, China
| | - Jun Tie
- College of Computer Science, South-Central Minzu University, Wuhan, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
2
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
3
|
Hussain M, Thakur RK, Khazir J, Ahmed S, Khan MI, Rahi P, Peer LA, Shanmugam PV, Kaur S, Raina SN, Reshi ZA, Sehgal D, Rajpal VR, Mir BA. Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae): A High-value Medicinal Plant. Curr Top Med Chem 2024; 24:301-342. [PMID: 37711006 DOI: 10.2174/1568026623666230914104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.
Collapse
Affiliation(s)
- Manzoor Hussain
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Srinagar, J&K, India
| | - Sajad Ahmed
- Department of Plant Biotechnology, Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | | | - Praveen Rahi
- Biological Resources Center, Institut Pasteur, University de Paris, Paris, 75015, France
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, U.P, 201313, India
| | - Zafar Ahmad Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Deepmala Sehgal
- Syngenta, Jeolett's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Vijay Rani Rajpal
- Department of Botany, HansRaj College, University of Delhi, Delhi, 110007, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| |
Collapse
|
4
|
Liu R, Yang J, Li Y, Xie J, Wang J. Heme oxygenase-1: The roles of both good and evil in neurodegenerative diseases. J Neurochem 2023; 167:347-361. [PMID: 37746863 DOI: 10.1111/jnc.15969] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Heme oxygenase-1 (HO-1) is the only way for cells to decompose heme. It can cleave heme to produce carbon monoxide (CO), ferrous iron (Fe2+ ), and biliverdin (BV). BV is reduced to bilirubin (BR) by biliverdin reductase(BVR). In previous studies, HO-1 was considered to have protective effects because of its anti-inflammatory, anti-apoptosis, and antiproliferation functions. However, emerging experimental studies have found that the metabolites derived from HO-1 can cause increase iin intracellular oxidative stress, mitochondrial damage, iron death, and autophagy. Because of its particularity, it is very meaningful to understand its exact mechanism. In this review, we summarized the protective and toxic effects of HO-1, its potential mechanism, its role in neurodegenerative diseases and related drug research. This knowledge may be beneficial to the development of new therapies for neurodegenerative diseases and is crucial to the development of new therapeutic strategies and biomarkers.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Jiahua Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Wendt F, Wittig F, Rupprecht A, Ramer R, Langer P, Emmert S, Frank M, Hinz B. A Thia-Analogous Indirubin N-Glycoside Disrupts Mitochondrial Function and Causes the Death of Human Melanoma and Cutaneous Squamous Cell Carcinoma Cells. Cells 2023; 12:2409. [PMID: 37830623 PMCID: PMC10572502 DOI: 10.3390/cells12192409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Skin cancer is the most common malignant disease worldwide and, therefore, also poses a challenge from a pharmacotherapeutic perspective. Derivatives of indirubin are an interesting option in this context. In the present study, the effects of 3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(β-d-glucopyranosyl)-oxindole (KD87), a thia-analogous indirubin N-glycoside, on the viability and mitochondrial properties of melanoma (A375) and squamous cell carcinoma cells (A431) of the skin were investigated. In both cell lines, KD87 caused decreased viability, the activation of caspases-3 and -7, and the inhibition of colony formation. At the mitochondrial level, a concentration-dependent decrease in both the basal and ATP-linked oxygen consumption rate and in the reserve capacity of oxidative respiration were registered in the presence of KD87. These changes were accompanied by morphological alterations in the mitochondria, a release of mitochondrial cytochrome c into the cytosol and significant reductions in succinate dehydrogenase complex subunit B (SDHB, subunit of complex II) in A375 and A431 cells and NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8, subunit of complex I) in A375 cells. The effect of KD87 was accompanied by a significant upregulation of the enzyme heme oxygenase-1, whose inhibition led to a partial but significant reduction in the metabolic-activity-reducing effect of KD87. In summary, our data show a mitochondria-targeting effect of KD87 as part of the cytotoxic effect of this compound on skin cancer cells, which should be considered in future studies with this class of compounds.
Collapse
Affiliation(s)
- Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Anne Rupprecht
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Peter Langer
- Institute of Organic Chemistry, University of Rostock, 18059 Rostock, Germany;
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Marcus Frank
- Electron Microscopy Centre, Rostock University Medical Centre, 18057 Rostock, Germany;
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| |
Collapse
|
6
|
Zhang H, You Z, Li Y, Gao C, Wang Y, Zhang X. Chrysosplenol D can inhibit the growth of prostate cancer by inducing reactive oxygen species and autophagy. Immun Inflamm Dis 2023; 11:e1061. [PMID: 37904714 PMCID: PMC10614118 DOI: 10.1002/iid3.1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE To uncover the effects of chrysosplenol D (CHD) on the progression of prostate cancer in vitro as well as in mice. METHODS DU145 and PC-3 cells were treated with increasing doses of CHD for 24, 48, or 72 h. Cell Counting Kit-8 (CCK-8) and colony formation assays were conducted to confirm the effects of CHD on cell viability. Flow cytometry (FCM) and immunostaining assays showed the effects of CHD on cell apoptosis and oxidative stress. Immunoblot was performed to detect the effects of CHD on autophagy. Besides, tumor growth assays were conducted to confirm the role of CHD in tumor growth in mice. GraphPad 6.0 was used for statistical analysis. All data were represented as mean ± SD. p < .05 and the significant difference was indicated by an asterisk. RESULTS CHD suppressed the viability of prostate cancer cells in CCK-8 assays, decreased colony number in colony formation assays, and induced cell apoptosis in FCM and immunostaining assays. CHD also restrained the oxidative stress with a decreased 2'-7'-dichlorofluorescein diacetate staining intensity. CHD restrained the autophagy of prostate cancer cells, as well as suppressed tumor growth in mice. CONCLUSION CHD could serve as a drug for prostate cancer.
Collapse
Affiliation(s)
- Haoyu Zhang
- Department of UrologyThe Second People's Hospital of KunshanKunshanJiangsuChina
| | - Zhixin You
- Department of UrologyThe Second People's Hospital of KunshanKunshanJiangsuChina
| | - Yilei Li
- Department of UrologyThe Second People's Hospital of KunshanKunshanJiangsuChina
| | - Cheng Gao
- Department of UrologyThe Second People's Hospital of KunshanKunshanJiangsuChina
| | - Yuhao Wang
- Department of UrologyThe Second People's Hospital of KunshanKunshanJiangsuChina
| | - Xiaoxiang Zhang
- Department of UrologyThe Second People's Hospital of KunshanKunshanJiangsuChina
| |
Collapse
|
7
|
Cantero-González G, Alvarenga N, Florentín-Pavía MM, Gonzalez-Maldonado P, Sotelo PH. Antiviral activity of two Acanthospermum species against herpes simplex virus 1. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115958. [PMID: 36470308 DOI: 10.1016/j.jep.2022.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthospermum species are used in traditional medicine for treating various pathologies, including bacterial and viral infections. In a screening study, we identified the activity of the ethanolic extracts of Acanthospermum australe and Acanthospermum hispidum against herpes simplex virus 1 (HSV-1). AIM OF THE STUDY In this work, we analyzed the phytochemical profile and antiviral activity of the chemical fractionation products of Acanthospermum australe and Acanthospermum hispidum. Additionally, we identified the effect of these fractions on different steps of the viral cycle. MATERIALS AND METHODS Acanthospermum samples were extracted with methanol and further partitioned with solvents of increasing polarities: hexane, chloroform, ethyl acetate, and butanol. Cytotoxicity and antiviral activity were analyzed for each fraction. The active fractions were tested to identify the virucidal effect and the inhibition of virus-cell binding. Further, the effect of these fractions on the replication and viral gene was quantitated by qPCR, and the expression of gD protein was evaluated by Western blot. RESULTS The chloroform and hexane fractions of Acanthospermum hispidum and Acanthospermum australe showed dose-dependent antiviral activity. The chloroform fraction inhibited the virus-cell binding and virus cycle in a post-entry mechanism by decreasing replication and the expression of early and late viral genes. The hexane fraction did not inhibit virus binding; however, it showed antiviral activity in post-entry events by inhibiting the immediate-early, early, and late genes. We identified in both species the presence of 3.6-dimetoxiapigenin, axillarin, and penduletin in the chloroform fraction and methyl-(Z,Z)-9,12-octadecadienoate and phytol in the hexane fraction. CONCLUSIONS Acanthospermum hispidum and Acanthospermum australe possess antiviral activity against HSV-1 and affect different steps of the viral cycle. These characteristics make them good candidates for developing phytotherapeutic products against HSV-1.
Collapse
Affiliation(s)
- Guadalupe Cantero-González
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay.
| | - Nelson Alvarenga
- Phytochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay.
| | - Marcos M Florentín-Pavía
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay.
| | - Pamela Gonzalez-Maldonado
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay.
| | - Pablo H Sotelo
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay.
| |
Collapse
|
8
|
Li Y, Zhao N, Ye J, Xu F, Luo S, Lang T. The crystal structure of Chrysosplenol D, C 18H 16O 8. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C18H16O8, monoclinic, P21/n (no. 14), a = 14.5762(6) Å, b = 6.6791(3) Å, c = 17.4240(7) Å, β = 103.5820(10)°, V = 1648.89(12) Å3, Z = 4, R
gt
(F) = 0.0436, wR
ref
(F
2) = 0.1218, T = 293(2) K.
Collapse
Affiliation(s)
- Yijv Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang , 550025 , China
| | - Nengwu Zhao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang , 550025 , China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang , 550025 , China
| | - Fangfang Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang , 550025 , China
| | - Shuntong Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang , 550025 , China
| | - Tianqiong Lang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine , Guiyang , 550025 , China
| |
Collapse
|
9
|
Hemoxygenase-1 Promotes Head and Neck Cancer Cell Viability. Antioxidants (Basel) 2022; 11:antiox11102077. [PMID: 36290800 PMCID: PMC9598840 DOI: 10.3390/antiox11102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a remarkably heterogeneous disease with around 50% mortality, a fact that has prompted researchers to try new approaches to improve patient survival. Hemoxygenase-1 (HO-1) is the rate-limiting step for heme degradation into carbon monoxide, free iron and biliverdin. We have previously reported that HO-1 protein is upregulated in human HNSCC samples and that it is localized in the cytoplasmic and nuclear compartments; additionally, we have demonstrated that HO-1 nuclear localization is associated with malignant progression. In this work, by using pharmacological and genetic experimental approaches, we begin to elucidate the mechanisms through which HO-1 plays a role in HNSCC. We found that high HO-1 mRNA was associated with decreased patient survival in early stages of HNSCC. In vitro experiments have shown that full-length HO-1 localizes in the cytoplasm, and that, depending on its enzymatic activity, it increases cell viability and promotes cell cycle progression. Instead, HO-1 does not alter migration capacity. Furthermore, we show that C-terminal truncated HO-1 localizes into the nucleus, increases cell viability and promotes cell cycle progression. In conclusion, we herein demonstrate that HO-1 displays protumor activities in HNSCC that depend, at least in part, on the nuclear localization of HO-1.
Collapse
|
10
|
Fu C, Zhang K, Wang M, Qiu F. Casticin and chrysosplenol D from Artemisia annua L. induce apoptosis by inhibiting topoisomerase IIα in human non-small-cell lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154095. [PMID: 35398735 DOI: 10.1016/j.phymed.2022.154095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Artemisia annua L. (A. annua) and its active components exhibit antitumour effects in many cancer cells. However, the biological processes and mechanisms involved are not well understood, especially for the treatment of non-small-cell lung cancer (NSCLC). PURPOSE This study aimed to comprehensively explore the biological processes of A. annua and its active components in NSCLC cells and to identify the mechanism by which these compounds induce apoptosis. STUDY DESIGNS/METHODS Cell viability and flow cytometry assays were used to evaluate the cytotoxicity of A. annua active components casticin (CAS) and chrysosplenol D (CHD) in A. annua in NSCLC cells. After treatment with CAS and CHD, A549 cells were subjected to RNA sequencing (RNA-seq) analysis, differentially expressed genes (DEGs) were screened and subjected to functional enrichment analysis (KEGG and GO analysis) as well as protein interaction network analysis. The key targets associated with apoptosis induction in A549 cells were screened by Cytoscape, and the screened DEGs were validated by qRT-PCR. Immunoblotting, immunofluorescence, and molecular docking assays were used to determine whether CAS and/or CHD could induce apoptosis in NSCLC cells by inducing DNA damage through down-regulation of topoisomerase IIα (topo IIα) expression. The same experiments were verified again in the H1299 lung cancer cell line. RESULTS CAS and CHD inhibited NSCLC cells proliferation in a time- and dose-dependent manner, and significantly induced apoptosis. A total of 115 co-upregulated DEGs and 277 co-downregulated DEGs were identified in A549 cells following treatment with CAS and CHD. Comprehensive and systematic data about biological processes and mechanisms were obtained. DNA damage pathways and topo IIα targets were screened to study the apoptosis effects of CAS and CHD on NSCLC cells. CAS and CHD may be able to induce DNA damage by binding to topo IIα-DNA and reducing topo IIα activity. CONCLUSION This study suggested that CAS and CHD may reduce topo IIα activity by binding to topo IIα-DNA, affecting the replication of DNA, triggering DNA damage, and inducing apoptosis. It described a novel mechanism associated with topo IIα inhibition to reveal a novel role for CAS and CHD in A. annua as potential anticancer agents and/or adjuvants in NSCLC cells.
Collapse
Affiliation(s)
- Chunqing Fu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Keyu Zhang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Manyuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Feng Qiu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Ho HY, Chen PJ, Chuang YC, Lo YS, Lin CC, Hsieh MJ, Chen MK. Picrasidine I Triggers Heme Oxygenase-1-Induced Apoptosis in Nasopharyngeal Carcinoma Cells via ERK and Akt Signaling Pathways. Int J Mol Sci 2022; 23:ijms23116103. [PMID: 35682782 PMCID: PMC9181417 DOI: 10.3390/ijms23116103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a higher incidence in Taiwan than worldwide. Although it is a radiosensitive malignancy, cancer recurrence is still high in the advanced stages because of its ability to induce lymph node metastasis. Picrasidine I from Picrasma quassioides has been reported as a potential drug for targeting multiple signaling pathways. The present study aimed to explore the role of picrasidine I in the apoptosis of NPC cells. Our results show that picrasidine I induced cytotoxic effects in NPC cells and caused cell cycle arrest in the sub-G1, S, and G2/M phases. Western blot analysis further demonstrated that the modulation of apoptosis through the extrinsic and intrinsic pathways was involved in picrasidine I-induced cell death. Downregulation of the ERK1/2 and Akt signaling pathways was also found in picrasidine I-induced apoptosis. Additionally, the apoptosis array showed that picrasidine I significantly increased heme oxygenase-1 (HO-1) expression, which could act as a critical molecule in picrasidine I-induced apoptosis in NPC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets also revealed that the HMOX1 mRNA level (HO-1) is lower in patients with head and neck squamous carcinoma (HNSCC) and NPC than in patients without cancer. Our study indicated that picrasidine I exerts anticancer effects in NPC by modulating HO-1 via the ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Ping-Ju Chen
- Department of Dentistry, Changhua Christian Hospital, Changhua 500, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Correspondence: (M.-J.H.); (M.-K.C.); Tel.: +886-4-7238595 (M.-J.H. & M.-K.C.); Fax: +886-4-7232942 (M.-J.H. & M.-K.C.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Correspondence: (M.-J.H.); (M.-K.C.); Tel.: +886-4-7238595 (M.-J.H. & M.-K.C.); Fax: +886-4-7232942 (M.-J.H. & M.-K.C.)
| |
Collapse
|
12
|
Chien MH, Shih PC, Ding YF, Chen LH, Hsieh FK, Tsai MY, Li PY, Lin CW, Yang SF. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity. Expert Opin Ther Targets 2022; 26:375-388. [PMID: 35361044 DOI: 10.1080/14728222.2022.2061349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND GO-Y078, a new synthetic analogue of curcumin (CUR), has higher oral bioavailability and anticancer activity than CUR, but the oncostatic effect of GO-Y078 on oral squamous cell carcinoma (OSCC) is largely unknown. RESEARCH DESIGN AND METHODS In the present study, we examined the oncostatic properties and possible mechanisms of GO-Y078 on human SCC-9 and HSC-3 OSCC cells. Results: Our results indicated that GO-Y078 showed a cytostatic effect against OSCC cells, and this antiproliferative phenomenon stemmed from a mechanism involving multiple levels of cooperation, including cell-cycle G2/M arrest and apoptosis induction. Mechanistically, GO-Y078 treatment induced caspase-mediated apoptosis via upregulating two apoptosis-modulating proteins, SMAC/DIABLO and heme oxygenase (HO)-1. GO-Y078 transcriptionally induced upregulation of the HO-1 gene by increasing the AP-1 DNA-binding activity, which was initiated by activation of the p38 /JNK1/2 pathways. In the clinic, patients with head and neck cancers expressed lower HO-1 and SMAC/DIABLO levels in primary cancer tissues compared to normal tissues. Clinical datasets also revealed that patients with head and neck cancers expressing high HO-1 had a favorable prognosis. Conclusions: Our results provide new insights into the role of GO-Y078-induced molecular regulation in suppressing OSCC growth and suggest that GO-Y078 has potential therapeutic applications for OSCC.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan
| | - Pei-Chun Shih
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Feng-Koo Hsieh
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Meng-Ying Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Yi Li
- Graduate Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|