1
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
2
|
Lin Y, Shi H, Yang R, Li S, Tang J, Li S. A transcriptomic analysis of incisional hernia based on high-throughput sequencing technology. Hernia 2024; 28:1899-1907. [PMID: 39073735 DOI: 10.1007/s10029-024-03116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Incisional hernia is a common postoperative complication; however, few transcriptomic studies have been conducted on it. In this study, we used second-generation high-throughput sequencing to explore the pathogenesis and potential therapeutic targets of incisional hernias. METHODS Superficial fasciae were collected from 15 patients without hernia and 21 patients with an incisional hernia. High-throughput sequencing of the fascia was performed to generate an expression matrix. We analyzed the matrix to identify differentially expressed genes (DEGs) and performed gene ontology and enrichment analyses of these DEGs. Additionally, an external dataset was utilized to identify key DEGs. RESULTS We identified 1,823 DEGs closely associated with extracellular matrix (ECM) imbalance, bacterial inflammatory response, and fibrillar collagen trimerization. TNNT3, CMAY5, ATP1B4, ASB5, CILP, SIX4, FBN1 and FNDC5 were identified as key DEGs at the intersection of the two expression matrices. Moreover, non-alcoholic fatty liver disease-related, TNF, and IL-17 signaling pathways were identified as key enrichment pathways. CONCLUSIONS We identified eight key DEGs and three pathways associated with incisional hernias. Our findings offer new insights into the pathogenesis of incisional hernias and highlight potential targets for their prevention and treatment.
Collapse
Affiliation(s)
- Yiming Lin
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Hekai Shi
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Rongduo Yang
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Shaochun Li
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Jianxiong Tang
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China
| | - Shaojie Li
- Department of General Surgery, Fudan University Affiliated Huadong Hosptial, No.221, West Yan'an Road, Jing'an District, Shanghai, 200040, Republic of China.
| |
Collapse
|
3
|
Lin W, Wang Y, Zheng L. Polycystic ovarian syndrome (PCOS) and recurrent spontaneous abortion (RSA) are associated with the PI3K-AKT pathway activation. PeerJ 2024; 12:e17950. [PMID: 39253602 PMCID: PMC11382649 DOI: 10.7717/peerj.17950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Aims We aimed to elucidate the mechanism leading to polycystic ovarian syndrome (PCOS) and recurrent spontaneous abortion (RSA). Background PCOS is an endocrine disorder. Patients with RSA also have a high incidence rate of PCOS, implying that PCOS and RSA may share the same pathological mechanism. Objective The single-cell RNA-seq datasets of PCOS (GSE168404 and GSE193123) and RSA GSE113790 and GSE178535) were downloaded from the Gene Expression Omnibus (GEO) database. Methods Datasets of PSCO and RSA patients were retrieved from the Gene Expression Omnibus (GEO) database. The "WGCNA" package was used to determine the module eigengenes associated with the PCOS and RSA phenotypes and the gene functions were analyzed using the "DAVID" database. The GSEA analysis was performed in "clusterProfiler" package, and key genes in the activated pathways were identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Real-time quantitative PCR (RT-qPCR) was conducted to determine the mRNA level. Cell viability and apoptosis were measured by cell counting kit-8 (CCK-8) and flow cytometry, respectively. Results The modules related to PCOS and RSA were sectioned by weighted gene co-expression network analysis (WGCNA) and positive correlation modules of PCOS and RSA were all enriched in angiogenesis and Wnt pathways. The GSEA further revealed that these biological processes of angiogenesis, Wnt and regulation of cell cycle were significantly positively correlated with the PCOS and RSA phenotypes. The intersection of the positive correlation modules of PCOS and RSA contained 80 key genes, which were mainly enriched in kinase-related signal pathways and were significant high-expressed in the disease samples. Subsequently, visualization of these genes including PDGFC, GHR, PRLR and ITGA3 showed that these genes were associated with the PI3K-AKT signal pathway. Moreover, the experimental results showed that PRLR had a higher expression in KGN cells, and that knocking PRLR down suppressed cell viability and promoted apoptosis of KGN cells. Conclusion This study revealed the common pathological mechanisms between PCOS and RSA and explored the role of the PI3K-AKT signaling pathway in the two diseases, providing a new direction for the clinical treatment of PCOS and RSA.
Collapse
Affiliation(s)
- Wenjing Lin
- Reproductive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuting Wang
- Anesthesiology Department, Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lei Zheng
- Anesthesiology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Campo Verde Arbocco F, Pascual LI, García D, Ortiz I, Gamarra-Luques C, Carón RW, Hapon MB. Epigenetic impact of hypothyroidism on the functional differentiation of the mammary gland in rats. Mol Cell Endocrinol 2024; 590:112267. [PMID: 38729597 DOI: 10.1016/j.mce.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Mammary gland (MG) lactogenic differentiation involves epigenetic mechanisms. We have previously shown that hypothyroidism (HypoT) alters the MG transcriptome in lactation. However, the role of thyroid hormones (T3 and T4 a. k.a. THs) in epigenetic differentiation of MG is still unknown. We used a model of post-lactating HypoT rats to study in MG: a) Methylation and expression level of Gata3, Elf5, Stat6, Stat5a, Stat5b; b) Expression of Lalba, IL-4Rα and Ncoa1 mRNA; c) Histone H3 acetylation and d) Estrogen and progesterone concentration in serum. HypoT increases the estrogen serum level, decreases the progesterone level, promotes methylation of Stat5a, Stat5b and Stat6, decreasing their mRNA level and of its target genes (Lalba and IL-4Rα) and increases the Ncoa1 mRNA expression and histone H3 acetylation level. Our results proved that HypoT alters the post-lactation MG epigenome and could compromise mammary functional differentiation.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad de Mendoza, Facultad de Ciencias Médicas, Argentina.
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Daiana García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Irina Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Rubén Walter Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
5
|
Albert A. M. D, Nagaraj A, Somarathinam K, Vinayagam P, Arasambattu K. M, Kothandan G. Crystal structure and Hirshfeld surface analysis of ( E)- N-(2-styrylphen-yl)benzene-sulfonamide. Acta Crystallogr E Crystallogr Commun 2024; 80:1034-1038. [PMID: 39372169 PMCID: PMC11451488 DOI: 10.1107/s2056989024008892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C-H⋯π inter-actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter-actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter-action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of -8.27 kcal mol-1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.
Collapse
Affiliation(s)
| | - Achyuta Nagaraj
- CAS in Crystallography and Biophysics University of Madras,ChennaiIndia
| | | | | | | | - Gugan Kothandan
- CAS in Crystallography and Biophysics University of Madras,ChennaiIndia
| |
Collapse
|
6
|
Geng R, Shao H, Qian K, Chen H, Qin A. Aloperine Inhibits ASFV via Regulating PRLR/JAK2 Signaling Pathway In Vitro. Int J Mol Sci 2024; 25:9083. [PMID: 39201769 PMCID: PMC11354989 DOI: 10.3390/ijms25169083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
African swine fever (ASF) has become a global pandemic due to inadequate prevention and control measures, posing a significant threat to the swine industry. Despite the approval of a single vaccine in Vietnam, no antiviral drugs against the ASF virus (ASFV) are currently available. Aloperine (ALO), a quinolizidine alkaloid extracted from the seeds and leaves of bitter beans, exhibits various biological functions, including anti-inflammatory, anti-cancer, and antiviral activities. In this study, we found that ALO could inhibit ASFV replication in MA-104, PK-15, 3D4/21, and WSL cells in a dose-dependent manner without cytotoxicity at 100 μM. Furthermore, it was verified that ALO acted on the co- and post-infection stages of ASFV by time-of-addition assay, and inhibited viral internalization rather than directly inactivating the virus. Notably, RT-qPCR analysis indicated that ALO did not exert anti-inflammatory activity during ASFV infection. Additionally, gene ontology (GO) and KEGG pathway enrichment analyses of transcriptomic data revealed that ALO could inhibit ASFV replication via the PRLR/JAK2 signaling pathway. Together, these findings suggest that ALO effectively inhibits ASFV replication in vitro and provides a potential new target for developing anti-ASFV drugs.
Collapse
Affiliation(s)
- Renhao Geng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (H.S.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongxia Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (H.S.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (H.S.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China;
| | - Aijian Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (H.S.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Schoenfeld K, Harwardt J, Kolmar H. Better safe than sorry: dual targeting antibodies for cancer immunotherapy. Biol Chem 2024; 405:443-459. [PMID: 38297991 DOI: 10.1515/hsz-2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Antibody-based therapies are revolutionizing cancer treatment and experience a steady increase from preclinical and clinical pipelines to market share. While the clinical success of monoclonal antibodies is frequently limited by low response rates, treatment resistance and various other factors, multispecific antibodies open up new prospects by addressing tumor complexity as well as immune response actuation potently improving safety and efficacy. Novel antibody approaches involve simultaneous binding of two antigens on one cell implying increased specificity and reduced tumor escape for dual tumor-associated antigen targeting and enhanced and durable cytotoxic effects for dual immune cell-related antigen targeting. This article reviews antibody and cell-based therapeutics for oncology with intrinsic dual targeting of either tumor cells or immune cells. As revealed in various preclinical studies and clinical trials, dual targeting molecules are promising candidates constituting the next generation of antibody drugs for fighting cancer.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Kheshti J, Ahmadyousefi M, Soleimani M. Novel engineered HER2 specific recombinant protein nanocages for targeted drug delivery. Mol Biol Rep 2024; 51:773. [PMID: 38904710 DOI: 10.1007/s11033-024-09636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Protein nanocages resemble natural biomimetic carriers and can be engineered to act as targeted delivery systems, making them an attractive option for various drug delivery and biomedical applications. Our research investigated the genetic link of a specific anti-HER2 peptide (LTVSPWY) to the exposed N-terminal region of the maize (Zea mays) ferritin 1 (ZmFer1) protein nanocage, employing either a 7-amino acid (for LTVS-ZmFer1) or 16-amino acid (for LTVS-L-ZmFer1) linker. We utilized a heat treatment method to load the chemotherapeutic drug doxorubicin into the protein nanocage. The construct with the longer linker (LTVS-L) produced a greater amount of soluble protein nanocage and was selected for further experiments. The average size, polydispersity index, and zeta potential of the engineered protein nanocage were 19.01 nm, 0.168, and - 2.13 mV, respectively. The LTVS-L-ZmFer1 protein nanocage exhibited excellent thermal stability, withstanding temperatures up to 100 °C with only partial denaturation. Furthermore, we observed that cellular uptake of the LTVS-L-ZmFer1 protein nanocages in HER2-positive breast cancer cells was significantly higher compared to ZmFer1 after labeling with FITC (fluorescein isothiocyanate) (P-value = 0.0001). In addition, we observed a significant decrease in the viability of SKBR3 cells when treated with DOX-loaded LTVS-L-ZmFer1 protein nanocages compared to cells treated with DOX-loaded ZmFer1 protein nanocages. Therefore, this new treatment strategy may prove to be an effective way to reduce both the side effects and toxicity associated with conventional cancer treatments in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Zhang J, Liu J, Yue Y, Wang L, He Q, Xu S, Li J, Liao Y, Chen Y, Wang S, Xie Y, Zhang B, Bian Y, Dimitrov DS, Yuan Y, Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J Exp Clin Cancer Res 2024; 43:173. [PMID: 38898487 PMCID: PMC11188579 DOI: 10.1186/s13046-024-03099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Shuyi Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yunji Liao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | | | - Yueqing Xie
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China.
| |
Collapse
|
10
|
Pan L, Li J, Xu Q, Gao Z, Yang M, Wu X, Li X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine (Baltimore) 2024; 103:e38508. [PMID: 38875362 PMCID: PMC11175886 DOI: 10.1097/md.0000000000038508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is currently the most commonly occurring cancer globally. Among breast cancer cases, the human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for 15% to 20% and is a crucial focus in the treatment of breast cancer. Common HER2-targeted drugs approved for treating early and/or advanced breast cancer include trastuzumab and pertuzumab, which effectively improve patient prognosis. However, despite treatment, most patients with terminal HER2-positive breast cancer ultimately suffer death from the disease due to primary or acquired drug resistance. The prevalence of aberrantly activated the protein kinase B (AKT) signaling in HER2-positive breast cancer was already observed in previous studies. It is well known that p-AKT expression is linked to an unfavorable prognosis, and the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, as the most common mutated pathway in breast cancer, plays a major role in the mechanism of drug resistance. Therefore, in the current review, we summarize the molecular alterations present in HER2-positive breast cancer, elucidate the relationships between HER2 overexpression and alterations in the PI3K/AKT signaling pathway and the pathways of the alterations in breast cancer, and summarize the resistant mechanism of drugs targeting the HER2-AKT pathway, which will provide an adjunctive therapeutic rationale for subsequent resistance to directed therapy in the future.
Collapse
Affiliation(s)
- Linghui Pan
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinling Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, China
| | - Qi Xu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zili Gao
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoping Wu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Maher SP, Bakowski MA, Vantaux A, Flannery EL, Andolina C, Gupta M, Antonova-Koch Y, Argomaniz M, Cabrera-Mora M, Campo B, Chao AT, Chatterjee AK, Cheng WT, Chuenchob E, Cooper CA, Cottier K, Galinski MR, Harupa-Chung A, Ji H, Joseph SB, Lenz T, Lonardi S, Matheson J, Mikolajczak SA, Moeller T, Orban A, Padín-Irizarry V, Pan K, Péneau J, Prudhomme J, Roesch C, Ruberto AA, Sabnis SS, Saney CL, Sattabongkot J, Sereshki S, Suriyakan S, Ubalee R, Wang Y, Wasisakun P, Yin J, Popovici J, McNamara CW, Joyner CJ, Nosten F, Witkowski B, Le Roch KG, Kyle DE. A Drug Repurposing Approach Reveals Targetable Epigenetic Pathways in Plasmodium vivax Hypnozoites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.31.526483. [PMID: 36778461 PMCID: PMC9915689 DOI: 10.1101/2023.01.31.526483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radical cure of Plasmodium vivax malaria must include elimination of quiescent 'hypnozoite' forms in the liver; however, the only FDA-approved treatments are contraindicated in many vulnerable populations. To identify new drugs and drug targets for hypnozoites, we screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library and a collection of epigenetic inhibitors against P. vivax liver stages. From both libraries, we identified inhibitors targeting epigenetics pathways as selectively active against P. vivax and P. cynomolgi hypnozoites. These include DNA methyltransferase (DNMT) inhibitors as well as several inhibitors targeting histone post-translational modifications. Immunofluorescence staining of Plasmodium liver forms showed strong nuclear 5-methylcystosine signal, indicating liver stage parasite DNA is methylated. Using bisulfite sequencing, we mapped genomic DNA methylation in sporozoites, revealing DNA methylation signals in most coding genes. We also demonstrated that methylation level in proximal promoter regions as well as in the first exon of the genes may affect, at least partially, gene expression in P. vivax. The importance of selective inhibitors targeting epigenetic features on hypnozoites was validated using MMV019721, an acetyl-CoA synthetase inhibitor that affects histone acetylation and was previously reported as active against P. falciparum blood stages. In summary, our data indicate that several epigenetic mechanisms are likely modulating hypnozoite formation or persistence and provide an avenue for the discovery and development of improved radical cure antimalarials.
Collapse
Affiliation(s)
- S. P. Maher
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | - M. A. Bakowski
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - A. Vantaux
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - E. L. Flannery
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - C. Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - M. Gupta
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - Y. Antonova-Koch
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - M. Argomaniz
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - M. Cabrera-Mora
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
| | - B. Campo
- Medicines for Malaria Venture (MMV); Geneva, 1215, Switzerland
| | - A. T. Chao
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - A. K. Chatterjee
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - W. T. Cheng
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - E. Chuenchob
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - C. A. Cooper
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | | | - M. R. Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University; Atlanta, GA, 30329, USA
| | - A. Harupa-Chung
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | - H. Ji
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - S. B. Joseph
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - T. Lenz
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - S. Lonardi
- Department of Computer Science and Engineering, University of California; Riverside, CA, 92521, USA
| | - J. Matheson
- Department of Microbiology and Immunology, University of Otago; Dunedin, 9016, New Zealand
| | - S. A. Mikolajczak
- Novartis Institute for Tropical Diseases, Novartis Institutes for Biomedical Research; Emeryville, CA, 94608, USA
| | | | - A. Orban
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - V. Padín-Irizarry
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
- School of Sciences, Clayton State University; Morrow, GA, 30260, USA
| | - K. Pan
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - J. Péneau
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - J. Prudhomme
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - C. Roesch
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - A. A. Ruberto
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| | - S. S. Sabnis
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - C. L. Saney
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
| | - J. Sattabongkot
- Mahidol Vivax Research Unit, Mahidol University; Bangkok, 10400, Thailand
| | - S. Sereshki
- Department of Computer Science and Engineering, University of California; Riverside, CA, 92521, USA
| | - S. Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - R. Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS); Bangkok, 10400, Thailand
| | - Y. Wang
- Department of Chemistry, University of California; Riverside, CA, 92521
- Environmental Toxicology Graduate Program, University of California; Riverside, CA, 92521, USA
| | - P. Wasisakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
| | - J. Yin
- Environmental Toxicology Graduate Program, University of California; Riverside, CA, 92521, USA
| | - J. Popovici
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - C. W. McNamara
- Calibr, a division of The Scripps Research Institute; La Jolla, CA, 92037, USA
| | - C. J. Joyner
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia; Athens, GA, 30602, USA
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Emory National Primate Research Center, Emory University; Atlanta, GA, 30329, USA
| | - F. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit; Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford; Oxford, OX3 7LG, UK
| | - B. Witkowski
- Malaria Molecular Epidemiology Unit, Institute Pasteur of Cambodia; Phnom Penh, 120 210, Cambodia
| | - K. G. Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California; Riverside, CA, 92521, USA
| | - D. E. Kyle
- Center for Tropical & Emerging Global Disease, University of Georgia; Athens, GA, 30602, USA
| |
Collapse
|
12
|
Yang T, Chi Y, Wang X, Xu C, Chen X, Liu Y, Huang S, Zhu X, Zhang H, Zhuo H, Wu D. PRL-mediated STAT5B/ARRB2 pathway promotes the progression of prostate cancer through the activation of MAPK signaling. Cell Death Dis 2024; 15:128. [PMID: 38341429 PMCID: PMC10858970 DOI: 10.1038/s41419-023-06362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 02/12/2024]
Abstract
Previous study showed that higher expression of prolactin (PRL) was found in CRPC samples compared with hormone-naive prostate cancer (HNPC) and benign prostatic hyperplasia (BPH) samples. We further investigate the function of PRL in prostate cancer (PCa) and explored its downstream effects. We found heterogeneous expression of the PRLR in clinical prostate samples. The VCaP and 22Rv1 cells exhibited PRLR expression. Among the downstream proteins, STAT5B was the dominant subtype in clinical samples and cell lines. Human recombinant PRL stimulation of PCa cells with PRLR expression resulted in increased phosphorylation of STAT5B(pSTAT5B) and progression of PCa in vitro and in vivo, and STAT5B knockdown can suppress the malignant behavior of PCa. To understand the mechanism further, we performed Bioinformatic analysis, ChIP qPCR, and luciferase reporter gene assay. The results revealed that ARRB2 was the transcription target gene of STAT5B, and higher expression of ARRB2 was related to higher aggression and poorer prognosis of PCa. Additionally, Gene set enrichment analysis indicated that higher expression of ARRB2 was significantly enriched in the MAPK signaling pathway. Immunohistochemistry (IHC) demonstrated elevated pSTAT5B, ARRB2, and pERK1/2 expression levels in CRPC tissues compared to HNPC and BPH. Mechanically, ARRB2 enhanced the activation of the MAPK pathway by binding to ERK1/2, thereby promoting the phosphorylation of ERK1/2 (pERK1/2). In conclusion, our study demonstrated that PRL stimulation can promote the progression of PCa through STAT5B/ARRB2 pathway and activation of MAPK signaling, which can be suppressed by intervention targeting STAT5B. Blockade of the STAT5B can be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, The Third People's Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yongnan Chi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoyang Zhang
- Department of Pathology, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhuo
- Department of Urology, The Third People's Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Tuncel T, Metintas M, Güntülü AK, Güneş HV. Whole-Genome Comparative Copy Number Alteration Profiling between Malignant Pleural Mesothelioma and Asbestos-Induced Chronic Pleuritis. J Environ Pathol Toxicol Oncol 2024; 43:31-44. [PMID: 37824368 DOI: 10.1615/jenvironpatholtoxicoloncol.2023047755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is rare and aggressive cancer. The most important risk factor for MPM is exposure to asbestos. In this study, we scanned the genomes of individuals MPM and asbestos-induced chronic pleuritis (AICP) to compare and determine copy number alterations (CNAs) between two asbestos-related diseases. We used high-resolution SNP arrays to compare CNA profiles between MPM (n = 55) and AICP (n = 18). DNAs extracted from pleural tissues in both groups. SNP array analysis revealed common losses at 1p, 3p, 6q, 9p, 13q, 14q, 15q, 16q, 22q and frequent gains at chromosomes 1, 3, 5, 7, 8, and 6p, 12q, 15q, 17p, 20q in MPMs (frequencies max 67%-min 30%; these alterations were not detected in AICPs. Besides detecting well-known MPM-associated CNAs, our high -resolution copy number profiling also detected comparatively rare CNAs for MPMs including losses like 9q33.3, 16q and gains of 1p, 1q, 3p, 3q, 6p, 7q, 15q, 12q, 17p, 20q at significant frequencies in the MPM cohort. We also observed Copy Number gains clustered on the NF2 locus in AICPs, whereas this region was commonly deleted in MPMs. According to this distinct genomic profiles between the two groups, AICPs genomes can be clearly distinguished from highly altered MPM genomes. Hence, we can suggest that SNP arrays can be used as a supporting diagnostic tool in terms of discriminating asbestos-related malignant disease such as MPM and benign pleural lesions, which can be challenging in most instances.
Collapse
Affiliation(s)
- Tunç Tuncel
- Health Institutes of Turkey, Turkish Biotechnology Institute, Ankara, Turkey
| | - Muzaffer Metintas
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - A K Güntülü
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Hasan Veysi Güneş
- Eskisehir Osmangazi University Medical Faculty, Department of Medical Biology, Eskisehir, Turkey
| |
Collapse
|
14
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
15
|
Chen Z, Liang H, Yan X, Liang Q, Bai Z, Xie T, Dai J, Zhao X, Xiao Y. Astragalus polysaccharide promotes autophagy and alleviates diabetic nephropathy by targeting the lncRNA Gm41268/PRLR pathway. Ren Fail 2023; 45:2284211. [PMID: 37994436 PMCID: PMC11001349 DOI: 10.1080/0886022x.2023.2284211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Astragalus polysaccharide (APS) is a major bioactive component of the Chinese herb astragalus, with well-established protective effects on the kidney. However, the effect of APS on diabetic nephropathy (DN) is unclear. METHODS Long non-coding RNA (lncRNA) expression profiles in kidney samples from control, db/db, and APS-treated db/db mice were evaluated using RNA high-throughput sequencing techniques. Additionally, rat renal tubular epithelial (NRK-52E) cells were cultured in high glucose (HG) media. We inhibited the expression of Gm41268 and prolactin receptor (PRLR) by transfecting NRK-52E cells with Gm41268-targeting antisense oligonucleotides and PRLR siRNA. RESULTS We found that APS treatment reduced 24-h urinary protein levels and fasting blood glucose and improved glucose intolerance and pathological renal damage in db/db mice. Furthermore, APS treatment enhanced autophagy and alleviated fibrosis in the db/db mice. We identified a novel lncRNA, Gm41268, which was differentially expressed in the three groups, and the cis-regulatory target gene PRLR. APS treatment induced autophagy by reducing p62 and p-mammalian target of rapamycin (mTOR) protein levels and increasing the LC3 II/I ratio. Furthermore, APS alleviated fibrosis by downregulating fibronectin (FN), transforming growth factor-β (TGF-β), and collagen IV levels. In addition, APS reversed the HG-induced overexpression of Gm41268 and PRLR. Reduction of Gm41268 decreased PRLR expression, restored autophagy, and ameliorated renal fibrosis in vitro. Inhibition of PRLR could enhance the protective effect of APS. CONCLUSIONS In summary, we demonstrated that the therapeutic effect of APS on DN is mediated via the Gm41268/PRLR pathway. This information contributes to the exploration of bioactive constituents in Chinese herbs as potential treatments for DN.
Collapse
Affiliation(s)
- Zedong Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huiyu Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiuer Liang
- Affiliated Dongguan People’s Hospital, Southern Medical University (Dongguan People’s Hospital), Guangzhou, China
| | - Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaojiao Dai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
17
|
Phoenix JT, Budreika A, Kostlan RJ, Hwang JH, Fanning SW, Kregel S. Editorial: Hormone resistance in cancer. Front Endocrinol (Lausanne) 2023; 14:1272932. [PMID: 37693345 PMCID: PMC10484586 DOI: 10.3389/fendo.2023.1272932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- John T. Phoenix
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Audris Budreika
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Raymond J. Kostlan
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sean W. Fanning
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Steven Kregel
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
18
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
19
|
Li CH, Fang CY, Chan MH, Lu PJ, Ger LP, Chu JS, Chang YC, Chen CL, Hsiao M. The activation of EP300 by F11R leads to EMT and acts as a prognostic factor in triple-negative breast cancers. J Pathol Clin Res 2023; 9:165-181. [PMID: 36782375 PMCID: PMC10073929 DOI: 10.1002/cjp2.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Cancer progression is influenced by junctional adhesion molecule (JAM) family members. The relationship between JAM family members and different types of cancer was examined using The Cancer Genome Atlas dataset. mRNA levels of the F11R (F11 receptor) in tumours were inversely correlated to the expression of JAM-2 and JAM-3. This relationship was unique to breast cancer (BCa) and was associated with poor prognosis (p = 0.024, hazard ratio = 1.44 [1.05-1.99]). A 50-gene molecular signature (prediction analysis of microarray 50) was used to subtype BCa. F11R mRNA expression significantly increased in human epidermal growth factor receptor 2 (HER2)-enriched (p = 0.0035) and basal-like BCa tumours (p = 0.0005). We evaluated F11R protein levels in two different compositions of BCa subtype patient tissue array cohorts to determine the relationship between BCa subtype and prognosis. Immunohistochemistry staining revealed that a high F11R protein level was associated with poor overall survival (p < 0.001; Taipei Medical University [TMU] cohort, p < 0.001; Kaohsiung Veterans General Hospital [KVGH] cohort) or disease-free survival (p < 0.001 [TMU cohort], p = 0.034 [KVGH cohort]) in patients with BCa. Comparison of F11R levels in different subtypes revealed the association of poor prognosis with high levels of F11R among luminal (p < 0.001 [TMU cohort], p = 0.027 [KVGH cohort]), HER2 positive (p = 0.018 [TMU cohort], p = 0.037 [KVGH cohort]), and triple-negative (p = 0.013 [TMU cohort], p = 0.037 [KVGH cohort]) BCa. F11R-based RNA microarray analysis and Ingenuity Pathway Analysis were successful in profiling the detailed gene ontology of triple-negative BCa cells regulated by F11R. The EP300 transcription factor was highly correlated with F11R in BCa (R = 0.51, p < 0.001). By analysing these F11R-affected molecules with the L1000CDs datasets, we were able to predict some repurposing drugs for potential application in F11R-positive BCa treatment.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | | | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jan-Show Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|
21
|
Liu W, Wang Y, Zhang Y, Yu T, Ge J. Analysis of Breast Cancer Biomarker HER2 Based on Single Stranded DNA Aptamer and Enzyme Signal Amplification. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Ubiquitin-Specific Peptidase 8 Modulates Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis in Breast Cancer by Stabilizing Estrogen Receptor Alpha. JOURNAL OF ONCOLOGY 2023; 2023:8483325. [PMID: 36644233 PMCID: PMC9839415 DOI: 10.1155/2023/8483325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023]
Abstract
Breast cancer (BC) is the most common neoplastic and lethal malignancy in women. Although antiendocrine therapy is the main treatment for estrogen receptor alpha (ERα)-positive BC, the development of resistance is a major clinical complication. In this study, we aimed to explore the role of ubiquitin-specific peptidase 8 (USP8) in ERα signaling and identify potential targets for endocrine resistance. Public databases were used to analyze USP8 expression, prognosis, clinical characteristics, and immune cell infiltration. Immunohistochemistry and western blot assays were used to detect protein levels and ERα signaling. Quantitative reverse transcription-PCR was used to measure ERα target gene expression. The cell counting kit-8, wound-healing, clone formation, and Transwell assays were used to investigate the effects of USP8 depletion or inhibition on cell proliferation, migration, and invasion. An immunofluorescence assay was used for localizing USP8 and ERα, and a protein stability assay was performed for detecting the degradation of ERα protein. The cell cycle and apoptosis were assessed using flow cytometry. USP8 was highly expressed in the luminal subtype of BC and was associated with poor prognosis. The infiltration levels of many immune cells were positively correlated with USP8 expression. Depletion of USP8 dramatically decreased the ERα signaling activity and weakened the proliferation, migration, and invasion capabilities of BC cells. USP8 knockdown markedly induced apoptosis and cell cycle arrest (G0/G1). Colocalization analysis and protein stability assays indicated a probable mechanism by which USP8 regulates ERα. Our study demonstrates that USP8 might be crucial in BC development and may be considered a potential target for treating ER-positive BC malignancies in vitro.
Collapse
|
23
|
Zhu C, Zhang L, Heidari M, Sun S, Chang S, Xie Q, Ai Y, Dong K, Zhang H. Small RNA deep sequencing revealed microRNAs' involvement in modulating cellular senescence and immortalization state. Poult Sci 2023; 102:102474. [PMID: 36689784 PMCID: PMC9876980 DOI: 10.1016/j.psj.2022.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Unlike rodent cells, spontaneous immortalization of avian cells and human cells is a very rare event. According to patent publications and current literature, there are no more than 4 spontaneously immortalized chicken embryo fibroblast (CEF) cell lines established up to date. One of those cell lines is ADOL (Avian Disease and Oncology Laboratory) ZS-1 cell line, which was established by continuous passaging of the CEFs derived from the specific pathogen free (SPF) 0.TVB*S1 (commonly known as rapid feathering susceptible or RFS) genetic line of chickens. The RFS genetic line of chickens was developed and has been maintained on the SPF chicken farm of USDA-ARS facility, ADOL, in East Lansing, Michigan, which is known as one of a few lines of chickens that are free of any known avian endogenous virus genes. To explore potential roles that epigenetic factors may play in modulating cellular senescence processes and spontaneous immortalization state, total RNAs extracted from samples of the RFS primary CEFs, RFS CEFs reached the 21st passage, and the ZS-1 cells were subjected to small RNA sequencing. Collectively, a total of 531 miRNAs was identified in the 3 types of samples. In contrast to the primary CEF samples, 50 miRNAs were identified with significantly differential expression only in the 21st passage samples; a different subset of 63 differentially expressed miRNAs was identified only in the ZS-1 samples; the majority of differentially expressed miRNAs identified in both the 21st passage CEF and the ZS-1 samples were more or less directionally consistent. Gene Ontology analysis results suggested that the epigenetic factor, miRNAs, plays a role in modulating the cellular senescence and spontaneous immortalization processes through various bioprocesses and key pathways including ErbB and MAPK signaling pathways. These findings provided the experimental and bioinformatic evidence for a better understanding on the epigenetic factor of miRNAs in association with cellular senescence and spontaneous immortalization process in avian cells.
Collapse
Affiliation(s)
- Chen Zhu
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA,Michigan State University, East Lansing, MI 48824, USA
| | - Lei Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA,Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Mohammad Heidari
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Shuhong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA.
| |
Collapse
|
24
|
Wang Z, Liu Y, Chen F, Liao H, Wang X, Guo Z, Wang Z. Feasibility and mechanism analysis of Reduning in the prevention of sepsis-induced pulmonary fibrosis. Front Pharmacol 2022; 13:1079511. [PMID: 36605402 PMCID: PMC9810142 DOI: 10.3389/fphar.2022.1079511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: The increasing mortality in patients with sepsis-induced pulmonary fibrosis owes to a lack of effective treatment options. This study aims to explore the possibility and possible targets of Reduning in the prevention of sepsis-related pulmonary fibrosis. Methods: The active components and targets of Reduning were searched and screened from the database and analysis platform of traditional Chinese medicine (TCM) system pharmacology. GeneCards, human genome database, DisGeNET database, and the OMIM database were checked to determine the targets associated with sepsis-induced pulmonary fibrosis. DAVID Bioinformatics Resources 6.8 was used for GO and KEGG enrichment analysis to predict its possible signaling pathways and explore its molecular mechanism. The protein-protein interaction (PPI) network was used to identify key active components and core targets. Molecular docking technology was applied to screen the complexes with stable binding of key active components and core targets. Molecular dynamics simulations were used to verify the binding stability and molecular dynamics characteristics of the complexes. The protective effect of RDN on sepsis-induced pulmonary fibrosis was verified by in vitro and in vivo experiments. Results: There were 319 shared targets between sepsis-induced pulmonary fibrosis and RDN. GO enrichment analysis showed that they mainly regulated and participated in the positive regulation of kinase activity, mitogen-activated protein kinase (MAPK) cascade, and protein phosphorylation. KEGG enrichment analysis showed that they were mainly enriched in the mitogen-activated protein kinase cascade signaling pathway, the calcium signaling pathway, the apoptosis pathway, and other signaling pathways. The results of molecular docking and molecular dynamics simulations showed that the active components, stigmasterol, beta-sitosterol, and quercetin, had good binding activities with ERBB2, and they exhibited good stability. Molecular validation experiments confirmed RDN could alleviate lung fibrosis induced by cecum ligation and puncture (CLP), in parallel with the inhibition of the ERBB2-p38 MAPK pathway in mouse alveolar macrophages (AMs). Discussion: Reduning may prevent sepsis-induced pulmonary fibrosis by regulating the ERBB2-p38 MAPK signaling pathway, which provides a possibility for the prevention of sepsis-induced pulmonary fibrosis with traditional Chinese medicine.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuxin Liu
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Chen
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haiyan Liao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China,*Correspondence: Zhong Wang,
| |
Collapse
|
25
|
PRLR and CACNA2D1 Impact the Prognosis of Breast Cancer by Regulating Tumor Immunity. J Pers Med 2022; 12:jpm12122086. [PMID: 36556307 PMCID: PMC9781148 DOI: 10.3390/jpm12122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) is one of the highly susceptible genes to breast cancer (BC); however, the role of PTEN-related RNAs in BC remains poorly understood. Understanding the effect of PTEN-related RNAs and their mechanisms may be helpful to clinicians. We screened the differentially expressed RNAs (deRNAs) related to PTEN and established the competitive endogenous RNA (ceRNA) network by integrating several databases. After that, the RNA model, prolactin receptor (PRLR)/calcium voltage-gated channel auxiliary subunit alpha2delta 1 (CACNA2D1), was obtained by KM survival analysis and logistic regression analysis. Finally, mutation, methylation, functional enrichment, and immune correlation were analyzed to explore the roles of these RNAs. Our results showed that PRLR might be harmful to BC, while CACNA2D1 might be beneficial to BC. Furthermore, the abnormal expression of PRLR in BC might result from mutation and hypomethylation, while the aberrant expression of CACNA2D1 might be ascribed to methylation. Mechanistically, PRLR might affect the prognosis of BC by inhibiting the expression of immune checkpoints, while CACNA2D1 might improve the prognosis of BC by increasing the immune cells infiltrating into BC and up-regulating the expression of immune checkpoints. The abnormal expression of PRLR and CACNA2D1 in BC is closely related to the prognosis of BC, and they may serve as targets for the treatment of BC.
Collapse
|
26
|
Yan Y, Chen Y, Pan J, Xing W, Li Q, Wang Y, Gei L, Yuan Y, Xie J, Zeng W, Chen D. Dopamine receptor D3 is related to prognosis in human hepatocellular carcinoma and inhibits tumor growth. BMC Cancer 2022; 22:1248. [DOI: 10.1186/s12885-022-10368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Dopamine receptors have been reported to play important roles in cancer progression. However, the role of dopamine receptor D3 (DRD3) in hepatocellular carcinoma (HCC) remains unclear.
Methods
The expression of DRD3 was detected by immunohistochemistry and real-time qPCR. The prognostic value of DRD3 in patients was investigated by analyzing selected databases, including cBioPortal and Kaplan–Meier plotter. Cell growth was tested by CCK8 assay, and Transwell assays were performed to assess cancer cell migration and invasion. The cAMP/ERK/CREB signaling pathway was evaluated by Western blot analysis and ELISA. An HCC xenograft model was established for in vivo experiments.
Results
DRD3 mRNA expression was significantly higher in nontumor tissues than in tumor tissues. Lower protein expression of DRD3 was related to poor recurrence-free survival (RFS) and overall survival (OS). Kaplan–Meier plotter analysis showed that higher expression of DRD3 mRNA was associated with better OS, RFS, disease-specific survival (DSS), and progression-free survival (PFS). cBioPortal analysis revealed that the alteration group, which harbored genetic mutations in DRD3, exhibited poor OS, RFS, DSS and PFS. According to CCK8 and Transwell assays, stable DRD3 overexpression cell line (ex-DRD3-SK-HEP-1) showed weaker proliferation, migration and invasion behaviors. PD128907, a DRD3 agonist, suppressed proliferation, migration and invasion in HCC cell lines, while U99194, a DRD3 antagonist, enhanced proliferation, migration and invasion in HCC cell lines. Western blot analysis and ELISA revealed that stable DRD3 knock-down cell line (sh-DRD3-PLC/PRF/5) and U99194 both increased the protein levels of cAMP, p-ERK and p-CREB; on the other hand, ex-DRD3-SK-HEP-1 and PD128907 decreased the protein levels of cAMP, p-ERK and p-CREB. SCH772984, an ERK antagonist, abolished the effect of U99194 on the malignant biological behaviors of HCC cells. In vivo, PD128907 suppressed tumor growth, and U99194 enhanced tumor growth.
Conclusion
Our results suggest that down-regulation of DRD3 is strongly involved in the progression of HCC, and DRD3 might be consider as an independent prognostic factor for HCC. Furthermore, DRD3 agonists may be a promising strategy for HCC therapy.
Collapse
|
27
|
Abstract
The pathogenesis of breast cancer is driven by multiple hormones and growth factors. One of these, prolactin (PRL), contributes to both mammary differentiation and oncogenesis, and yet the basis for these disparate effects has remained unclear. The focus of this review is to examine and place into context 2 recent studies that have provided insight into the roles of PRL receptors and PRL in tumorigenesis and tumor progression. One study provides novel evidence for opposing actions of PRL in the breast being mediated in part by differential PRL receptor (PRLr) isoform utilization. Briefly, homomeric complexes of the long isoform of the PRLr (PRLrL-PRLrL) promotes mammary differentiation, while heteromeric complexes of the intermediate and long PRLr (PRLrI-PRLrL) isoforms trigger mammary oncogenesis. Another study describes an immunodeficient, prolactin-humanized mouse model, NSG-Pro, that facilitates growth of PRL receptor-expressing patient-derived breast cancer xenografts. Evidence obtained with this model supports the interactions of physiological levels of PRL with estrogen and ERBB2 gene networks, the modulatory effects of PRL on drug responsiveness, and the pro-metastatic effects of PRL on breast cancer. This recent progress provides novel concepts, mechanisms and experimental models expected to renew interest in harnessing/exploiting PRLr signaling for therapeutic effects in breast cancer.
Collapse
Affiliation(s)
- Charles V Clevenger
- Correspondence: Charles V. Clevenger, Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA.
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
28
|
Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 2022; 13:949396. [PMID: 36187116 PMCID: PMC9520000 DOI: 10.3389/fendo.2022.949396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPβ dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.
Collapse
Affiliation(s)
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Hao S, Meng Q, Sun H, Li Y, Li Y, Gu L, Liu B, Zhang Y, Zhou H, Xu Z, Wang Y. The role of transketolase in human cancer progression and therapy. Biomed Pharmacother 2022; 154:113607. [PMID: 36030587 DOI: 10.1016/j.biopha.2022.113607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
Abstract
Transketolase (TKT) is an enzyme that is ubiquitously expressed in all living organisms and has been identified as an important regulator of cancer. Recent studies have shown that the TKT family includes the TKT gene and two TKT-like (TKTL) genes; TKTL1 and TKTL2. TKT and TKTL1 have been reported to be involved in the regulation of multiple cancer-related events, such as cancer cell proliferation, metastasis, invasion, epithelial-mesenchymal transition, chemoradiotherapy resistance, and patient survival and prognosis. Therefore, TKT may be an ideal target for cancer treatment. More importantly, the levels of TKTL1 were detected using EDIM technology for the early detection of some malignancies, and TKTL1 was more sensitive and specific than traditional tumor markers. Detecting TKTL1 levels before and after surgery could be used to evaluate the surgery's effect. While targeted TKT suppresses cancer in multiple ways, in some cases, it has detrimental effects on the organism. In this review, we discuss the role of TKT in different tumors and the detailed mechanisms while evaluating its value and limitations in clinical applications. Therefore, this review provides a basis for the clinical application of targeted therapy for TKT in the future, and a strategy for subsequent cancer-related research.
Collapse
Affiliation(s)
- Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
30
|
Targeted Therapeutic Options and Future Perspectives for HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14143305. [PMID: 35884366 PMCID: PMC9320771 DOI: 10.3390/cancers14143305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The development of several antiHuman Epidermal Growth Factor Receptor 2 (HER2) treatments over the last few years has improved the landscape of HER2-positive breast cancer. Despite this, relapse is still the main issue in HER2-positive breast cancer. The reasons for therapeutic failure lie in the heterogeneity of the disease itself, as well as in the drug resistance mechanisms. In this review, we intended to understand the milestones that have had an impact on this disease up to their implementation in clinical practice. In addition, understanding the underlying molecular biology of HER2-positive disease is essential for the optimization and personalization of the different treatment options. For this reason, we focused on two relevant aspects, which are triple-positive disease and the role that modulation of the immune response might play in treatment and prognosis. Abstract Despite the improvement achieved by the introduction of HER2-targeted therapy, up to 25% of early human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC) patients will relapse. Beyond trastuzumab, other agents approved for early HER2+ BC include the monoclonal antibody pertuzumab, the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) and the reversible HER2 inhibitor lapatinib. New agents, such as trastuzumab-deruxtecan or tucatinib in combination with capecitabine and trastuzumab, have also shown a significant improvement in the metastatic setting. Other therapeutic strategies to overcome treatment resistance have been explored in HER2+ BC, mainly in HER2+ that also overexpress estrogen receptors (ER+). In ER+ HER2+ patients, target therapies such as phosphoinositide-3-kinase (PI3K) pathway inhibition or cyclin-dependent kinases 4/6 blocking may be effective in controlling downstream of HER2 and many of the cellular pathways associated with resistance to HER2-targeted therapies. Multiple trials have explored these strategies with some promising results, and probably, in the next years conclusive results will succeed. In addition, HER2+ BC is known to be more immunogenic than other BC subgroups, with high variability between tumors. Different immunotherapeutic agents such as HER-2 therapy plus checkpoint inhibitors, or new vaccines approaches have been investigated in this setting, with promising but controversial results obtained to date.
Collapse
|
31
|
Functional regulations between genetic alteration-driven genes and drug target genes acting as prognostic biomarkers in breast cancer. Sci Rep 2022; 12:10641. [PMID: 35739271 PMCID: PMC9226112 DOI: 10.1038/s41598-022-13835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.
Collapse
|
32
|
Zong HF, Zhang BH, Zhu JW. Generating a Bispecific Antibody Drug Conjugate Targeting PRLR and HER2 with Improving the Internalization. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1749334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractAntibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. The bispecific targeting could improve the specificity, affinity, and internalization of the ADC molecules. Prolactin preceptor (PRLR) and HER2 have crosstalk signaling in breast cancer, and PRLR undergoes a rapid internalization compared with HER2. To improve the efficacy of HER2 ADCs with enhancing the target specificity and internalization, we constructed a PRLR/HER2-targeting bispecific ADC (BsADC). We evaluated the characterization of PRLR × HER2 BsADC from the affinity and internalization, and further assessed its in vitro cytotoxicity in human breast-cancer cell lines (BT474, T47D, and MDA-MB-231) using Cell Count Kit-8 analysis. Our data demonstrated that PRLR × HER2 BsADC kept the affinity to two targeting antigens after conjugating drugs and exhibited higher internalization efficiency in comparison to HER2 ADC. Furthermore, PRLR × HER2 BsADC demonstrated to have superior antitumor activity in human breast cancer in vitro. In conclusion, our findings indicate that it is feasible through increasing the internalization of target antibody to enhance the antitumor activity and therapeutic potential that could be further evaluated in in vivo animal model.
Collapse
Affiliation(s)
- Hui-Fang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bao-Hong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Jecho Institute Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
33
|
Willman M, Willman J, Lucke-Wold B. Endocrine resistant breast cancer: brain metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:240-251. [PMID: 35505937 PMCID: PMC9060566 DOI: 10.37349/etat.2022.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endocrine resistant breast cancer metastasis continues to serve as a significant clinical challenge with high morbidity and mortality for patients. As the number of breast cancer cases continues to rise, the rate of brain metastasis has also increased. For single lesions or a large symptomatic lesion with other smaller lesions, surgical resection is a viable option in non-eloquent regions. Stereotactic radiosurgery is a great option for post-operative therapy or for 10 or fewer small lesions (< 3 cm in size). Whole-brain radiation can be used sparingly for large tumor burdens but should encompass hippocampus sparing techniques. Chemotherapy options have remained relatively limited due to decreased permeability of the blood-brain barrier. Emerging monoclonal antibody treatments have offered initial promise, especially for endocrine resistant breast cancer metastasis.
Collapse
Affiliation(s)
- Matthew Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265, USA
| | - Jonathan Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265, USA
| |
Collapse
|
34
|
Design, Synthesis and Biological evaluation of novel Quinazoline Derivatives as potential NF-κb inhibitors. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Effects of Ruxolitinib and Calcitriol Combination Treatment on Various Molecular Subtypes of Breast Cancer. Int J Mol Sci 2022; 23:ijms23052535. [PMID: 35269680 PMCID: PMC8910493 DOI: 10.3390/ijms23052535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
The anticancer effects of ruxolitinib and calcitriol against breast cancer were reported previously. However, the effect of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer remains unexplored. In this study, we used MCF-7, SKBR3, and MDA-MB-468 cells to investigate the effect of ruxolitinib and calcitriol combination treatment on cell proliferation, apoptosis, cell cycle, and cell signaling markers, in vitro and in vivo. Our results revealed the synergistic anticancer effect of ruxolitinib and calcitriol combination treatment in SKBR3 and MDA-MB-468 cells, but not in MCF-7 cells in vitro, via cell proliferation inhibition, apoptosis induction, cell cycle arrest, and the alteration of cell signaling protein expression, including cell cycle-related (cyclin D1, CDK1, CDK4, p21, and p27), apoptosis-related (c-caspase and c-PARP), and cell proliferation-related (c-Myc, p-p53, and p-JAK2) proteins. Furthermore, in the MDA-MB-468 xenograft mouse model, we demonstrated the synergistic antitumor effect of ruxolitinib and calcitriol combination treatment, including the alteration of c-PARP, cyclin D1, and c-Myc expression, without significant drug toxicity. The combination exhibited a synergistic effect in HER2-enriched and triple-negative breast cancer subtypes. In conclusion, our results suggest different effects of the combination treatment of ruxolitinib and calcitriol depending on the molecular subtype of breast cancer.
Collapse
|
36
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
37
|
Standing D, Dandawate P, Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2022; 13:1112987. [PMID: 36714582 PMCID: PMC9880166 DOI: 10.3389/fendo.2022.1112987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Prolactin (PRL) is a peptide hormone mainly secreted from the anterior pituitary gland. PRL is reported to play a role in pregnancy, mammary gland development, immune modulation, reproduction, and differentiation of islet cells. PRL binds to its receptor PRLR, which belongs to a superfamily of the class I cytokine receptor that has no intrinsic kinase activity. In canonical signaling, PRL binding to PRLR induces downstream signaling including JAK-STAT, AKT and MAPK pathways. This leads to increased cell proliferation, stemness, migration, apoptosis inhibition, and resistance to chemotherapy. PRL-signaling is upregulated in numerous hormone-dependent cancers including breast, prostate, ovarian, and endometrial cancer. However, more recently, the pathway has been reported to play a tumor-promoting role in other cancer types such as colon, pancreas, and hepatocellular cancers. Hence, the signaling pathway is an attractive target for drug development with blockade of the receptor being a potential therapeutic approach. Different strategies have been developed to target this receptor including modification of PRL peptides (Del1-9-G129R-hPRL, G129R-Prl), growth hormone receptor/prolactin receptor bispecific antibody antagonist, neutralizing antibody LFA102, an antibody-drug conjugate (ABBV-176) of the humanized antibody h16f (PR-1594804) and pyrrolobenzodiazepine dimer, a bispecific antibody targeting both PRLR and CD3, an in vivo half-life extended fusion protein containing PRLR antagonist PrlRA and albumin binding domain. There have also been attempts to discover and develop small molecular inhibitors targeting PRLR. Recently, using structure-based virtual screening, we identified a few antipsychotic drugs including penfluridol as a molecule that inhibits PRL-signaling to inhibit PDAC tumor progression. In this review, we will summarize the recent advances in the biology of this receptor in cancer and give an account of PRLR antagonist development for the treatment of cancer.
Collapse
|