1
|
Yu Z, Li G, Xu W. Rapid detection of liver metastasis risk in colorectal cancer patients through blood test indicators. Front Oncol 2024; 14:1460136. [PMID: 39324006 PMCID: PMC11422013 DOI: 10.3389/fonc.2024.1460136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the most common malignancies, with liver metastasis being its most common form of metastasis. The diagnosis of colorectal cancer liver metastasis (CRCLM) mainly relies on imaging techniques and puncture biopsy techniques, but there is no simple and quick early diagnosisof CRCLM. Methods This study aims to develop a method for rapidly detecting the risk of liver metastasis in CRC patients through blood test indicators based on machine learning (ML) techniques, thereby improving treatment outcomes. To achieve this, blood test indicators from 246 CRC patients and 256 CRCLM patients were collected and analyzed, including routine blood tests, liver function tests, electrolyte tests, renal function tests, glucose determination, cardiac enzyme profiles, blood lipids, and tumor markers. Six commonly used ML models were used for CRC and CRCLM classification and optimized by using a feature selection strategy. Results The results showed that AdaBoost algorithm can achieve the highest accuracy of 89.3% among the six models, which improved to 91.1% after feature selection strategy, resulting with 20 key markers. Conclusions The results demonstrate that the combination of machine learning techniques with blood markers is feasible and effective for the rapid diagnosis of CRCLM, significantly im-proving diagnostic ac-curacy and patient prognosis.
Collapse
Affiliation(s)
- Zhou Yu
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| | - Wanxiu Xu
- Xingzhi College, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
2
|
Han Y, Chang Y, Wang J, Li N, Yu Y, Yang Z, Lv W, Liu W, Yin J, Wu J. A study predicting long-term survival capacity in postoperative advanced gastric cancer patients based on MAOA and subcutaneous muscle fat characteristics. World J Surg Oncol 2024; 22:184. [PMID: 39010072 PMCID: PMC11251287 DOI: 10.1186/s12957-024-03466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The prognosis of advanced gastric cancer (AGC) is relatively poor, and long-term survival depends on timely intervention. Currently, predicting survival rates remains a hot topic. The application of radiomics and immunohistochemistry-related techniques in cancer research is increasingly widespread. However, their integration for predicting long-term survival in AGC patients has not been fully explored. METHODS We Collected 150 patients diagnosed with AGC at the Affiliated Zhongshan Hospital of Dalian University who underwent radical surgery between 2015 and 2019. Following strict inclusion and exclusion criteria, 90 patients were included in the analysis. We Collected postoperative pathological specimens from enrolled patients, analyzed the expression levels of MAOA using immunohistochemical techniques, and quantified these levels as the MAOAHScore. Obtained plain abdominal CT images from patients, delineated the region of interest at the L3 vertebral body level, and extracted radiomics features. Lasso Cox regression was used to select significant features to establish a radionics risk score, convert it into a categorical variable named risk, and use Cox regression to identify independent predictive factors for constructing a clinical prediction model. ROC, DCA, and calibration curves validated the model's performance. RESULTS The enrolled patients had an average age of 65.71 years, including 70 males and 20 females. Multivariate Cox regression analysis revealed that risk (P = 0.001, HR = 3.303), MAOAHScore (P = 0.043, HR = 2.055), and TNM stage (P = 0.047, HR = 2.273) emerged as independent prognostic risk factors for 3-year overall survival (OS) and The Similar results were found in the analysis of 3-year disease-specific survival (DSS). The nomogram developed could predict 3-year OS and DSS rates, with areas under the ROC curve (AUCs) of 0.81 and 0.797, respectively. Joint calibration and decision curve analyses (DCA) confirmed the nomogram's good predictive performance and clinical utility. CONCLUSION Integrating immunohistochemistry and muscle fat features provides a more accurate prediction of long-term survival in gastric cancer patients. This study offers new perspectives and methods for a deeper understanding of survival prediction in AGC.
Collapse
Grants
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
- No. 243, 2021 Dalian Deng Feng Program
Collapse
Affiliation(s)
- Yubo Han
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yaoyuan Chang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jiaqi Wang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nanbo Li
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yang Yu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhengbo Yang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weipeng Lv
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wenfei Liu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| | - Ju Wu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| |
Collapse
|
3
|
Samartha MVS, Dubey NK, Jena B, Maheswar G, Lo WC, Saxena S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis. J Cancer Res Clin Oncol 2024; 150:57. [PMID: 38291266 PMCID: PMC10827977 DOI: 10.1007/s00432-023-05566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Accurate and non-invasive estimation of MGMT promoter methylation status in glioblastoma (GBM) patients is of paramount clinical importance, as it is a predictive biomarker associated with improved overall survival (OS). In response to the clinical need, recent studies have focused on the development of non-invasive artificial intelligence (AI)-based methods for MGMT estimation. In this systematic review, we not only delve into the technical aspects of these AI-driven MGMT estimation methods but also emphasize their profound clinical implications. Specifically, we explore the potential impact of accurate non-invasive MGMT estimation on GBM patient care and treatment decisions. METHODS Employing a PRISMA search strategy, we identified 33 relevant studies from reputable databases, including PubMed, ScienceDirect, Google Scholar, and IEEE Explore. These studies were comprehensively assessed using 21 diverse attributes, encompassing factors such as types of imaging modalities, machine learning (ML) methods, and cohort sizes, with clear rationales for attribute scoring. Subsequently, we ranked these studies and established a cutoff value to categorize them into low-bias and high-bias groups. RESULTS By analyzing the 'cumulative plot of mean score' and the 'frequency plot curve' of the studies, we determined a cutoff value of 6.00. A higher mean score indicated a lower risk of bias, with studies scoring above the cutoff mark categorized as low-bias (73%), while 27% fell into the high-bias category. CONCLUSION Our findings underscore the immense potential of AI-based machine learning (ML) and deep learning (DL) methods in non-invasively determining MGMT promoter methylation status. Importantly, the clinical significance of these AI-driven advancements lies in their capacity to transform GBM patient care by providing accurate and timely information for treatment decisions. However, the translation of these technical advancements into clinical practice presents challenges, including the need for large multi-institutional cohorts and the integration of diverse data types. Addressing these challenges will be critical in realizing the full potential of AI in improving the reliability and accessibility of MGMT estimation while lowering the risk of bias in clinical decision-making.
Collapse
Affiliation(s)
- Mullapudi Venkata Sai Samartha
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management, Lucknow, 226013, India
| | - Biswajit Jena
- Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, 751030, India
| | - Gorantla Maheswar
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Wen-Cheng Lo
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
4
|
Wu L, Wu H, Li C, Zhang B, Li X, Zhen Y, Li H. Radiomics in colorectal cancer. IRADIOLOGY 2023; 1:236-244. [DOI: 10.1002/ird3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2024]
Abstract
AbstractColorectal cancer (CRC) is a global health challenge with high morbidity and mortality. Radiomics, an emerging field, utilizes quantitative imaging features extracted from medical images for CRC diagnosis, staging, treatment response assessment, and prognostication. This review highlights the potential of radiomics for personalized CRC management. Radiomics enables noninvasive tumor characterization, aiding in early detection and accurate diagnosis, and it can be used to predict tumor stage, lymph node involvement, and prognosis. Furthermore, radiomics guides personalized therapies by assessing the treatment response and identifying patients who could benefit. Challenges include standardizing imaging protocols and analysis techniques. Robust validation frameworks and user‐friendly software are needed for the integration of radiomics into clinical practice. Despite challenges, radiomics offers valuable insights into tumor biology, treatment response, and prognosis in CRC. Overcoming technical and clinical hurdles will unlock its full potential in CRC management.
Collapse
Affiliation(s)
- Long Wu
- Department of Anus and Intestinal Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Huan Wu
- Department of Infectious Diseases The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy Free University of Berlin Berlin Germany
| | - Baofang Zhang
- Department of Infectious Diseases The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Xiaoyun Li
- Department of Anus and Intestinal Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Yunhuan Zhen
- Department of Anus and Intestinal Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Haiyang Li
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| |
Collapse
|
5
|
O'Sullivan NJ, Kelly ME. Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions. Curr Oncol 2023; 30:4936-4945. [PMID: 37232830 DOI: 10.3390/curroncol30050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Radiomics refers to the conversion of medical imaging into high-throughput, quantifiable data in order to analyse disease patterns, guide prognosis and aid decision making. Radiogenomics is an extension of radiomics that combines conventional radiomics techniques with molecular analysis in the form of genomic and transcriptomic data, serving as an alternative to costly, labour-intensive genetic testing. Data on radiomics and radiogenomics in the field of pelvic oncology remain novel concepts in the literature. We aim to perform an up-to-date analysis of current applications of radiomics and radiogenomics in the field of pelvic oncology, particularly focusing on the prediction of survival, recurrence and treatment response. Several studies have applied these concepts to colorectal, urological, gynaecological and sarcomatous diseases, with individual efficacy yet poor reproducibility. This article highlights the current applications of radiomics and radiogenomics in pelvic oncology, as well as the current limitations and future directions. Despite a rapid increase in publications investigating the use of radiomics and radiogenomics in pelvic oncology, the current evidence is limited by poor reproducibility and small datasets. In the era of personalised medicine, this novel field of research has significant potential, particularly for predicting prognosis and guiding therapeutic decisions. Future research may provide fundamental data on how we treat this cohort of patients, with the aim of reducing the exposure of high-risk patients to highly morbid procedures.
Collapse
Affiliation(s)
- Niall J O'Sullivan
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Michael E Kelly
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
6
|
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology. Semin Cancer Biol 2023; 91:1-15. [PMID: 36801447 DOI: 10.1016/j.semcancer.2023.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.
Collapse
|
7
|
Qu H, Zhai H, Zhang S, Chen W, Zhong H, Cui X. Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases. Front Oncol 2023; 13:992096. [PMID: 36814812 PMCID: PMC9939899 DOI: 10.3389/fonc.2023.992096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Background and objective For patients with advanced colorectal liver metastases (CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and noninvasive indicator is urgently needed to predict its efficacy. In previous studies, dynamic radiomics predicted more accurately than conventional radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy prediction model for antiangiogenic therapy to provide more accurate guidance for clinical diagnosis and treatment decisions. Methods In this study, we use dynamic radiomics feature extraction method that extracts static features using tomographic images of different sequences of the same patient and then quantifies them into new dynamic features for the prediction of treatmentefficacy. In this retrospective study, we collected 76 patients who were diagnosed with unresectable CRLM between June 2016 and June 2021 in the First Hospital of China Medical University. All patients received standard treatment regimen of bevacizumab combined with chemotherapy in the first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were performed before treatment. Patients with multiple primary lesions as well as missing clinical or imaging information were excluded. Area Under Curve (AUC) and accuracy were used to evaluate model performance. Regions of interest (ROIs) were independently delineated by two radiologists to extract radiomics features. Three machine learning algorithms were used to construct two scores based on the best response and progression-free survival (PFS). Results For the task that predict the best response patients will achieve after treatment, by using ROC curve analysis, it can be seen that the relative change rate (RCR) feature performed best among all features and best in linear discriminantanalysis (AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan-Meier plots suggested that the score constructed using the RCR features could significantly distinguish patients with good response from those with poor response (Two-sided P<0.0001 for survival analysis). Conclusions This study demonstrates that the application of dynamic radiomics features can better predict the efficacy of CRLM patients receiving antiangiogenic therapy compared with conventional radiomics features. It allows patients to have a more accurate assessment of the effect of medical treatment before receiving treatment, and this assessment method is noninvasive, rapid, and less expensive. Dynamic radiomics model provides stronger guidance for the selection of treatment options and precision medicine.
Collapse
Affiliation(s)
- Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R, China
| | - Huan Zhai
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuairan Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenjuan Chen
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongshan Zhong
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Xiaoyu Cui, ; Hongshan Zhong,
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R, China,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China,*Correspondence: Xiaoyu Cui, ; Hongshan Zhong,
| |
Collapse
|
8
|
The Expressions and Functions of lncRNA Related to m6A in Hepatocellular Carcinoma from a Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1395557. [PMID: 36276996 PMCID: PMC9581679 DOI: 10.1155/2022/1395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer in these days. Besides, N6-methyladenosine (m6A) plays an important role in the occurrence and development of hepatocellular carcinoma. Meanwhile, it is known to us that long noncoding RNAs (lncRNA) have the capability to control the expression of genes which means some lncRNA can adjust the expression of some m6A.Thus, it is indispensable to dig the m6A-related lncRNA in hepatocellular carcinoma about its potential regulatory mechanism and immune analysis as well as its potential drugs. In this experiment, expression profile and clinical information of lncRNA are obtained by downloading the liver cancer data set from The Cancer Genome Atlas (TCGA) database. GO enrichment analysis is used to predict potential regulatory mechanism of lncRNA. Correlation analysis of clinical parameters are calculated via chisq.test. The Cox regression model is used in univariate and multivariate analysis, and the difference is statistically significant when P < 0.05. The results show that many kinds of lncRNA have influence on the prognosis of patients with HCC, and enrichment analysis discloses some pathways that can be used to evaluate mechanism underlying in HCC. The screening of targeted drugs can provide new clues for further experiments and clinical treatment.
Collapse
|
9
|
Saoudi González N, Castet F, Élez E, Macarulla T, Tabernero J. Current and emerging anti-angiogenic therapies in gastrointestinal and hepatobiliary cancers. Front Oncol 2022; 12:1021772. [PMID: 36300092 PMCID: PMC9589420 DOI: 10.3389/fonc.2022.1021772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Gastrointestinal tumours are a heterogeneous group of neoplasms that arise in the gastrointestinal tract and hepatobiliary system. Their incidence is rising globally and they currently represent the leading cause of cancer-related mortality worldwide. Anti-angiogenic agents have been incorporated into the treatment armamentarium of most of these malignancies and have improved survival outcomes, most notably in colorectal cancer and hepatocellular carcinoma. New treatment combinations with immunotherapies and other agents have led to unprecedented benefits and are revolutionising patient care. In this review, we detail the mechanisms of action of anti-angiogenic agents and the preclinical rationale underlying their combinations with immunotherapies. We review the clinical evidence supporting their use across all gastrointestinal tumours, with a particular emphasis on colorectal cancer and hepatocellular carcinoma. We discuss available biomarkers of response to these therapies and their utility in routine clinical practice. Finally, we summarise ongoing clinical trials in distinct settings and highlight the preclinical rationale supporting novel combinations.
Collapse
Affiliation(s)
| | | | | | - Teresa Macarulla
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
10
|
Zou J, Zhang H, Huang Y, Xu W, Huang Y, Zuo S, Li Z, Zhou H. Multi-Omics Analysis of the Tumor Microenvironment in Liver Metastasis of Colorectal Cancer Identified FJX1 as a Novel Biomarker. Front Genet 2022; 13:960954. [PMID: 35928453 PMCID: PMC9343787 DOI: 10.3389/fgene.2022.960954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer incidence and mortality have increased in recent years, with more than half of patients who died of colorectal cancer developing liver metastases. Consequently, colorectal cancer liver metastasis is the focus of clinical treatment, as well as being the most difficult. The primary target genes related to colorectal cancer liver metastasis were via bioinformatics analysis. First, five prognosis-related genes, CTAG1A, CSTL1, FJX1, IER5L, and KLHL35, were identified through screening, and the prognosis of the CSTL1, FJX1, IER5L, and KLHL35 high expression group was considerably poorer than that of the low expression group. Furthermore, the clinical correlation analysis revealed that in distinct pathological stages T, N, and M, the mRNA expression levels of CSTL1, IER5L, and KLHL35 were higher than in normal tissues. Finally, a correlation study of the above genes and clinical manifestations revealed that FJX1 was strongly linked to colorectal cancer liver metastasis. FJX1 is thought to affect chromogenic modification enzymes, the Notch signaling system, cell senescence, and other signaling pathways, according to KEGG enrichment analysis. FJX1 may be a critical target in colorectal cancer metastasis, and thus has the potential as a new biomarker to predict and treat colorectal cancer liver metastases.
Collapse
Affiliation(s)
- Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hesong Zhang
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wenjing Xu
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yujin Huang
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Siyuan Zuo
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Zhenhan Li
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
- *Correspondence: Hailang Zhou, ; Zhenhan Li,
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Huai’an, China
- *Correspondence: Hailang Zhou, ; Zhenhan Li,
| |
Collapse
|
11
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
12
|
Combined Hepatocellular-Cholangiocarcinoma: What the Multidisciplinary Team Should Know. Diagnostics (Basel) 2022; 12:diagnostics12040890. [PMID: 35453938 PMCID: PMC9026907 DOI: 10.3390/diagnostics12040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare type of primary liver malignancy. Among the risk factors, hepatitis B and hepatitis C virus infections, cirrhosis, and male gender are widely reported. The clinical appearance of cHCC-CCA is similar to that of HCC and iCCA and it is usually silent until advanced states, causing a delay of diagnosis. Diagnosis is mainly based on histology from biopsies or surgical specimens. Correct pre-surgical diagnosis during imaging studies is very problematic and is due to the heterogeneous characteristics of the lesion in imaging, with overlapping features of HCC and CCA. The predominant histological subtype within the lesion establishes the predominant imaging findings. Therefore, in this scenario, the radiological findings characteristic of HCC show an overlap with those of CCA. Since cHCC-CCAs are prevalent in patients at high risk of HCC and there is a risk that these may mimic HCC, it is currently difficult to see a non-invasive diagnosis of HCC. Surgery is the only curative treatment of HCC-CCA. The role of liver transplantation (LT) in the treatment of cHCC-CCA remains controversial, as is the role of ablative or systemic therapies in the treatment of this tumour. These lesions still remain challenging, both in diagnosis and in the treatment phase. Therefore, a pre-treatment imaging diagnosis is essential, as well as the identification of prognostic factors that could stratify the risk of recurrence and the most adequate therapy according to patient characteristics.
Collapse
|
13
|
Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, Palumbo P, Bruno F, Grassi R, Giovagnoni A, Grassi R, Miele V, Barile A. Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol 2022; 40:919-929. [PMID: 35344132 DOI: 10.1007/s11604-022-01271-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radiomics and radiogenomics are two words that recur often in language of radiologists, nuclear doctors and medical physicists especially in oncology field. Radiomics is the technique of medical images analysis to extract quantitative data that are not detected by human eye. METHODS This article is a narrative review on Radiomics in Medical Imaging. In particular, the review exposes the process, the limitations related to radiomics, and future prospects are discussed. RESULTS Several studies showed that radiomics is very promising. However, there were some critical issues: poor standardization and generalization of radiomics results, data-quality control, repeatability, reproducibility, database balancing and issues related to model overfitting. CONCLUSIONS Radiomics procedure should made considered all pitfalls and challenges to obtain robust and reproducible results that could be generalized in other patients cohort.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy.
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Silvia Pradella
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Alessandra Bruno
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
14
|
Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, Grassi R, Grassi F, Ottaiano A, Nasti G, Tatangelo F, Pilone V, Miele V, Brunese MC, Izzo F, Petrillo A. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases. Radiol Med 2022; 127:461-470. [PMID: 35347583 DOI: 10.1007/s11547-022-01477-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To assess the efficacy of radiomics features obtained by T2-weighted sequences to predict clinical outcomes following liver resection in colorectal liver metastases patients. METHODS This retrospective analysis was approved by the local Ethical Committee board and radiological databases were interrogated, from January 2018 to May 2021, to select patients with liver metastases with pathological proof and MRI study in pre-surgical setting. The cohort of patients included a training set and an external validation set. The internal training set included 51 patients with 61 years of median age and 121 liver metastases. The validation cohort consisted a total of 30 patients with single lesion with 60 years of median age. For each volume of interest, 851 radiomics features were extracted as median values using PyRadiomics. Nonparametric test, intraclass correlation, receiver operating characteristic (ROC) analysis, linear regression modelling and pattern recognition methods (support vector machine (SVM), k-nearest neighbours (KNN), artificial neural network (NNET) and decision tree (DT)) were considered. RESULTS The best predictor to discriminate expansive versus infiltrative front of tumour growth was obtained by wavelet_LHL_gldm_DependenceNonUniformityNormalized with an accuracy of 82%; to discriminate high grade versus low grade or absent was the wavelet_LLH_glcm_Imc1 with accuracy of 88%; to differentiate the mucinous type of tumour was the wavelet_LLH_glcm_JointEntropy with accuracy of 92% while to identify tumour recurrence was the wavelet_LLL_glcm_Correlation with accuracy of 85%. Linear regression model increased the performance obtained with respect to the univariate analysis exclusively in the discrimination of expansive versus infiltrative front of tumour growth reaching an accuracy of 90%, a sensitivity of 95% and a specificity of 80%. Considering significant texture metrics tested with pattern recognition approaches, the best performance was reached by the KNN in the discrimination of the tumour budding considering the four textural predictors obtaining an accuracy of 93%, a sensitivity of 81% and a specificity of 97%. CONCLUSIONS Ours results confirmed the capacity of radiomics to identify as biomarkers, several prognostic features that could affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Alessandro Ottaiano
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Guglielmo Nasti
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Fabiana Tatangelo
- Division of Pathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Vincenzo Pilone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
15
|
CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases. Cancers (Basel) 2022; 14:cancers14071648. [PMID: 35406419 PMCID: PMC8996874 DOI: 10.3390/cancers14071648] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The objective of the study was to assess the radiomic features obtained by computed tomography (CT) examination as prognostic biomarkers in patients with colorectal liver metastases, in order to predict histopathological outcomes following liver resection. We obtained good performance considering the single significant textural metric in the identification of the front of tumor growth (expansive versus infiltrative) and tumor budding (high grade versus low grade or absent), in the recognition of mucinous type, and in the detection of recurrences. Abstract Purpose: We aimed to assess the efficacy of radiomic features extracted by computed tomography (CT) in predicting histopathological outcomes following liver resection in colorectal liver metastases patients, evaluating recurrence, mutational status, histopathological characteristics (mucinous), and surgical resection margin. Methods: This retrospectively approved study included a training set and an external validation set. The internal training set included 49 patients with a median age of 60 years and 119 liver colorectal metastases. The validation cohort consisted of 28 patients with single liver colorectal metastasis and a median age of 61 years. Radiomic features were extracted using PyRadiomics on CT portal phase. Nonparametric Kruskal–Wallis tests, intraclass correlation, receiver operating characteristic (ROC) analyses, linear regression modeling, and pattern recognition methods (support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision tree (DT)) were considered. Results: The median value of intraclass correlation coefficients for the features was 0.92 (range 0.87–0.96). The best performance in discriminating expansive versus infiltrative front of tumor growth was wavelet_HHL_glcm_Imc2, with an accuracy of 79%, a sensitivity of 84%, and a specificity of 67%. The best performance in discriminating expansive versus tumor budding was wavelet_LLL_firstorder_Mean, with an accuracy of 86%, a sensitivity of 91%, and a specificity of 65%. The best performance in differentiating the mucinous type of tumor was original_firstorder_RobustMeanAbsoluteDeviation, with an accuracy of 88%, a sensitivity of 42%, and a specificity of 100%. The best performance in identifying tumor recurrence was the wavelet_HLH_glcm_Idmn, with an accuracy of 85%, a sensitivity of 81%, and a specificity of 88%. The best linear regression model was obtained with the identification of recurrence considering the linear combination of the 16 significant textural metrics (accuracy of 97%, sensitivity of 94%, and specificity of 98%). The best performance for each outcome was reached using KNN as a classifier with an accuracy greater than 86% in the training and validation sets for each classification problem; the best results were obtained with the identification of tumor front growth considering the seven significant textural features (accuracy of 97%, sensitivity of 90%, and specificity of 100%). Conclusions: This study confirmed the capacity of radiomics data to identify several prognostic features that may affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach.
Collapse
|
16
|
The Value of 18F-FDG-PET-CT Imaging in Treatment Evaluation of Colorectal Liver Metastases: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12030715. [PMID: 35328267 PMCID: PMC8947194 DOI: 10.3390/diagnostics12030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Up to 50% of patients with colorectal cancer either have synchronous colorectal liver metastases (CRLM) or develop CRLM over the course of their disease. Surgery and thermal ablation are the most common local treatment options of choice. Despite development and improvement in local treatment options, (local) recurrence remains a significant clinical problem. Many different imaging modalities can be used in the follow-up after treatment of CRLM, lacking evidence-based international consensus on the modality of choice. In this systematic review, we evaluated 18F-FDG-PET-CT performance after surgical resection, thermal ablation, radioembolization, and neoadjuvant and palliative chemotherapy based on current published literature. (2) Methods: A systematic literature search was performed on the PubMed database. (3) Results: A total of 31 original articles were included in the analysis. Only one suitable study was found describing the role of 18F-FDG-PET-CT after surgery, which makes it hard to draw a firm conclusion. 18F-FDG-PET-CT showed to be of additional value in the follow-up after thermal ablation, palliative chemotherapy, and radioembolization. 18F-FDG-PET-CT was found to be a poor to moderate predictor of pathologic response after neoadjuvant chemotherapy. (4) Conclusions: 18F-FDG-PET-CT is superior to conventional morphological imaging modalities in the early detection of residual disease after thermal ablation and in the treatment evaluation and prediction of prognosis during palliative chemotherapy and after radioembolization, and 18F-FDG-PET-CT could be considered in selected cases after neoadjuvant chemotherapy and surgical resection.
Collapse
|
17
|
Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, Grassi F, Belli A, Miele V, Izzo F, Petrillo A. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer 2022; 17:6. [PMID: 35246207 PMCID: PMC8897888 DOI: 10.1186/s13027-022-00422-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detention indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting. METHODS This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed. RESULTS In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and / or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring. CONCLUSIONS Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy.
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Igino Simonetti
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesca Grassi
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|
18
|
EOB-MR Based Radiomics Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases. Cancers (Basel) 2022; 14:cancers14051239. [PMID: 35267544 PMCID: PMC8909637 DOI: 10.3390/cancers14051239] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this study was to assess the efficacy of radiomics features obtained by EOB-MRI phase in order to predict clinical outcomes following liver resection in Colorectal Liver Metastases Patients, and evaluate recurrence, mutational status, pathological characteristic (mucinous) and surgical resection margin. Ours results confirmed the capacity of radiomics to identify, as biomarkers, several prognostic features that could affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach. These results were confirmed by external validation dataset. We obtained a good performance considering the single textural significant metric in the identification of front of tumor growth (expansive versus infiltrative) and tumor budding (high grade versus low grade or absent), in the recognition of mucinous type and in the detection of recurrences. Abstract The aim of this study was to assess the efficacy of radiomics features obtained by EOB-MRI phase in order to predict clinical outcomes following liver resection in Colorectal Liver Metastases Patients, and evaluate recurrence, mutational status, pathological characteristic (mucinous) and surgical resection margin. This retrospective analysis was approved by the local Ethical Committee board of National Cancer of Naples, IRCCS “Fondazione Pascale”. Radiological databases were interrogated from January 2018 to May 2021 in order to select patients with liver metastases with pathological proof and EOB-MRI study in pre-surgical setting. The cohort of patients included a training set (51 patients with 61 years of median age and 121 liver metastases) and an external validation set (30 patients with single lesion with 60 years of median age). For each segmented volume of interest by 2 expert radiologists, 851 radiomics features were extracted as median values using PyRadiomics. non-parametric test, intraclass correlation, receiver operating characteristic (ROC) analysis, linear regression modelling and pattern recognition methods (support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision tree (DT)) were considered. The best predictor to discriminate expansive versus infiltrative front of tumor growth was HLH_glcm_MaximumProbability extraxted on VIBE_FA30 with an accuracy of 84%, a sensitivity of 83%, and a specificity of 82%. The best predictor to discriminate tumor budding was Inverse Variance obtained by the original GLCM matrix extraxted on VIBE_FA30 with an accuracy of 89%, a sensitivity of 96% and a specificity of 65%. The best predictor to differentiate the mucinous type of tumor was the HHL_glszm_ZoneVariance extraxted on VIBE_FA30 with an accuracy of 85%, a sensitivity of 46% and a specificity of 95%. The best predictor to identify tumor recurrence was the LHL_glcm_Correlation extraxted on VIBE_FA30 with an accuracy of 86%, a sensitivity of 52% and a specificity of 97%. The best linear regression model was obtained in the identification of the tumor growth front considering the height textural significant metrics by VIBE_FA10 (an accuracy of 89%; sensitivity of 93% and a specificity of 82%). Considering significant texture metrics tested with pattern recognition approaches, the best performance for each outcome was reached by a KNN in the identification of recurrence with the 3 textural significant features extracted by VIBE_FA10 (AUC of 91%, an accuracy of 93%; sensitivity of 99% and a specificity of 77%). Ours results confirmed the capacity of radiomics to identify as biomarkers, several prognostic features that could affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach.
Collapse
|
19
|
Granata V, Fusco R, De Muzio F, Cutolo C, Setola SV, dell’ Aversana F, Ottaiano A, Avallone A, Nasti G, Grassi F, Pilone V, Miele V, Brunese L, Izzo F, Petrillo A. Contrast MR-Based Radiomics and Machine Learning Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases: A Preliminary Study. Cancers (Basel) 2022; 14:cancers14051110. [PMID: 35267418 PMCID: PMC8909569 DOI: 10.3390/cancers14051110] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The objective of the study was to evaluate the radiomics features obtained by contrast MRI studies as prognostic biomarkers in colorectal liver metastases patients to predict clinical outcomes following liver resection. We demonstrated a good performance considering the single textural significant metric in the identification of front of tumor growth (expansive versus infiltrative) and tumor budding (high grade versus low grade or absent), in the recognition of mucinous type and in the detection of recurrences. Moreover, considering linear regression models or neural network classifiers in a multivariate approach was possible to increase the performance in terms of accuracy, sensitivity, and specificity. Abstract Purpose: To assess radiomics features efficacy obtained by arterial and portal MRI phase in the prediction of clinical outcomes in the colorectal liver metastases patients, evaluating recurrence, mutational status, pathological characteristic (mucinous and tumor budding) and surgical resection margin. Methods: This retrospective analysis was approved by the local Ethical Committee board, and radiological databases were used to select patients with colorectal liver metastases with pathological proof and MRI study in a pre-surgical setting after neoadjuvant chemotherapy. The cohort of patients included a training set (51 patients with 61 years of median age and 121 liver metastases) and an external validation set (30 patients with single lesion with 60 years of median age). For each segmented volume of interest on MRI by two expert radiologists, 851 radiomics features were extracted as median values using the PyRadiomics tool. Non-parametric Kruskal-Wallis test, intraclass correlation, receiver operating characteristic (ROC) analysis, linear regression modelling and pattern recognition methods (support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision tree (DT)) were considered. Results: The best predictor to discriminate expansive versus infiltrative tumor growth front was wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis extracted on portal phase with accuracy of 82%, sensitivity of 84%, and specificity of 77%. The best predictor to discriminate tumor budding was wavelet_LLH_firstorder_10Percentile extracted on portal phase with accuracy of 92%, a sensitivity of 96%, and a specificity of 81%. The best predictor to differentiate the mucinous type of tumor was the wavelet_LLL_glcm_ClusterTendency extracted on portal phase with accuracy of 88%, a sensitivity of 38%, and a specificity of 100%. The best predictor to identify the recurrence was the wavelet_HLH_ngtdm_Complexity extracted on arterial phase with accuracy of 90%, a sensitivity of 71%, and a specificity of 95%. The best linear regression model was obtained in the identification of mucinous type considering the 13 textural significant metrics extracted by arterial phase (accuracy of 94%, sensitivity of 77% and a specificity of 99%). The best results were obtained in the identification of tumor budding with the eleven textural significant features extracted by arterial phase using a KNN (accuracy of 95%, sensitivity of 84%, and a specificity of 99%). Conclusions: Our results confirmed the capacity of radiomics to identify as biomarkers and several prognostic features that could affect the treatment choice in patients with liver metastases in order to obtain a more personalized approach.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy; (S.V.S.); (A.P.)
- Correspondence:
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy;
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy; (F.D.M.); (L.B.)
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (C.C.); (V.P.)
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy; (S.V.S.); (A.P.)
| | - Federica dell’ Aversana
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.d.A.); (F.G.)
| | - Alessandro Ottaiano
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy; (A.O.); (A.A.); (G.N.)
| | - Antonio Avallone
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy; (A.O.); (A.A.); (G.N.)
| | - Guglielmo Nasti
- Division of Abdominal Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy; (A.O.); (A.A.); (G.N.)
| | - Francesca Grassi
- Division of Radiology, Università Degli Studi Della Campania Luigi Vanvitelli, 80138 Naples, Italy; (F.d.A.); (F.G.)
| | - Vincenzo Pilone
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy; (C.C.); (V.P.)
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy; (F.D.M.); (L.B.)
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale–IRCCS di Napoli, 80131 Naples, Italy; (S.V.S.); (A.P.)
| |
Collapse
|