1
|
Galal ER, Abdelhakam DA, Ahmed LK, Elhusseny Y, Sayed SEP, Eltaweel NH. The association of FSCN1 (rs852479, rs1640233) and HOTAIR (rs920778) polymorphisms with the risk of breast cancer in Egyptian women. Mol Biol Rep 2024; 51:495. [PMID: 38587571 PMCID: PMC11001669 DOI: 10.1007/s11033-024-09459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Breast cancer (BC) is one of the most prevalent cancers that contribute to mortality among women worldwide. Despite contradictory findings, considerable evidence suggests that single nucleotide polymorphisms (SNPs) in the FSCN1 and HOTAIR genes may have a causative impact on the development of BC. This case-control study was conducted to evaluate the association of genotype frequency in FSCN1 rs852479, rs1640233, and HOTAIR rs920778 with susceptibility and prognosis of BC, as well as the impact of clinical stages and hormonal features. METHODS AND RESULTS FSCN1 (rs852479, rs1640233) and HOTAIR (rs920778) were genotyped using TaqMan real-time PCR assay in 200 BC patients and 200 cancer-free controls, all representing Egyptian women. Genotypic analyses in association with clinicopathological factors and disease risk were assessed. As a result, a significant association with BC risk was observed for CC genotype frequency of FSCN1 rs852479 A > C (OR = 0.395, 95% CI 0.204-0.76, p-value = 0.005). However, no significant correlation was detected between the FSCN1 rs1640233 C > T and HOTAIR rs920778 C > T polymorphic variants and susceptibility to BC. Interestingly, CC genotype of FSCN1 rs1640233 was more likely to progress tumor size and lymph node invasion in BC cases (p-value = 0.04 and 0.02, respectively). Moreover, it was revealed that there was a non-significant correlation between the haplotype distributions of FSCN1 rs852479 and rs1640233 and the probability of BC. CONCLUSIONS Based on the sample size and genetic characteristics of the subjects involved in the present study, our findings indicated that FSCN1 rs852479 may contribute to BC susceptibility in a sample of the Egyptian population.
Collapse
Affiliation(s)
- Eman Reda Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Dina A Abdelhakam
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lamiaa Khalaf Ahmed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Yasmine Elhusseny
- Medical Biochemistry and Molecular Biology Department, School of Medicine, Newgiza University, Giza, Egypt
| | - Sherif El Prince Sayed
- Department of General Surgery, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Noha H Eltaweel
- Medical Molecular Genetics Department, Human Genetics and Genome Project Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Jiang Q, Ling GY, Yan J, Tan JY, Nong RB, Li JW, Deng T, Mo LG, Huang QR. Identification of prognostic risk score of disulfidptosis-related genes and molecular subtypes in glioma. Biochem Biophys Rep 2024; 37:101605. [PMID: 38188362 PMCID: PMC10768521 DOI: 10.1016/j.bbrep.2023.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Programmed cell death is closely related to glioma. As a novel kind of cell death, the mechanism of disulfidptosis in glioma remains unclear. Therefore, it is of great importance to study the role of disulfidptosis-related genes (DRGs) in glioma. Methods We first investigated the genetic and transcriptional alterations of 15 DRGs. Two consensus cluster analyses were used to evaluate the association between DRGs and glioma subtypes. In addition, we constructed prognostic DRG risk scores to predict overall survival (OS) in glioma patients. Furthermore, we developed a nomogram to enhance the clinical utility of the DRG risk score. Finally, the expression levels of DRGs were verified by immunohistochemistry (IHC) staining. Results Most DRGs (14/15) were dysregulated in gliomas. The 15 DRGs were rarely mutated in gliomas, and only 50 of 987 samples (5.07 %) showed gene mutations. However, most of them had copy number variation (CNV) deletions or amplifications. Two distinct molecular subtypes were identified by cluster analysis, and DRG alterations were found to be related to the clinical characteristics, prognosis, and tumor immune microenvironment (TIME). The DRG risk score model based on 12 genes was developed and showed good performance in predicting OS. The nomogram confirmed that the risk score had a particularly strong influence on the prognosis of glioma. Furthermore, we discovered that low DRG scores, low tumor mutation burden, and immunosuppression were features of patients with better prognoses. Conclusion The DRG risk model can be used for the evaluation of clinical characteristics, prognosis prediction, and TIME estimation of glioma patients. These DRGs may be potential therapeutic targets in glioma.
Collapse
Affiliation(s)
| | | | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ju-Yuan Tan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren-Bao Nong
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jian-Wen Li
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li-Gen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qian-Rong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
4
|
Li L, Chen L, Li Z, Huang S, Chen Y, Li Z, Chen W. FSCN1 promotes proliferation, invasion and glycolysis via the IRF4/AKT signaling pathway in oral squamous cell carcinoma. BMC Oral Health 2023; 23:519. [PMID: 37491232 PMCID: PMC10369755 DOI: 10.1186/s12903-023-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a disease with increasing incidence worldwide that leads to deformity and death. In OSCC, fascin actin-bundling protein 1 (FSCN1) is an oncogene involved in the tumorigenesis process. However, the functions and potential mechanisms of FSCN1 in the OSCC tumorigenesis process have not been reported thus far. METHODS We used qRT‒PCR to detect the expression of FSCN1 in 40 paired OSCC tumor tissues (tumor) and neighboring noncancerous tissues. The role of FSCN1 was also assessed in vitro through colony formation, CCK-8, and transwell assays. Moreover, glucose consumption was detected. Western blotting was used to confirm the interaction of FSCN1, IRF4 and AKT. RESULTS FSCN1 was remarkably overexpressed in OSCC tissues and cell lines compared to corresponding controls. In addition, colony formation, CCK-8, and transwell assays revealed a notable reduction in OSCC growth and invasion when FSCN1 was silenced. FSCN1 silencing remarkably suppressed OSCC glycolysis. Mechanistic studies showed that FSCN1 achieves its function partially by activating interferon regulatory factor 4 (IRF4) and the AKT pathway in OSCC. CONCLUSION In conclusion, our study investigated the functions and mechanisms of the FSCN1/IRF4/AKT pathway in OSCC progression. In OSCC, FSCN1 is likely to be a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Liang Li
- Department of Stomatology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Lihui Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhangwei Li
- Department of Stomatology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shiqin Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yaoyao Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiyong Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Zhang N, Bian Q, Gao Y, Wang Q, Shi Y, Li X, Ma X, Chen H, Zhao Z, Yu H. The Role of Fascin-1 in Human Urologic Cancers: A Promising Biomarker or Therapeutic Target? Technol Cancer Res Treat 2023; 22:15330338231175733. [PMID: 37246525 PMCID: PMC10240877 DOI: 10.1177/15330338231175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
Human cancer statistics show that an increased incidence of urologic cancers such as bladder cancer, prostate cancer, and renal cell carcinoma. Due to the lack of early markers and effective therapeutic targets, their prognosis is poor. Fascin-1 is an actin-binding protein, which functions in the formation of cell protrusions by cross-linking with actin filaments. Studies have found that fascin-1 expression is elevated in most human cancers and is related to outcomes such as neoplasm metastasis, reduced survival, and increased aggressiveness. Fascin-1 has been considered as a potential therapeutic target for urologic cancers, but there is no comprehensive review to evaluate these studies. This review aimed to provide an enhanced literature review, outline, and summarize the mechanism of fascin-1 in urologic cancers and discuss the therapeutic potential of fascin-1 and the possibility of its use as a potential marker. We also focused on the correlation between the overexpression of fascin-1 and clinicopathological parameters. Mechanistically, fascin-1 is regulated by several regulators and signaling pathways (such as long noncoding RNA, microRNA, c-Jun N-terminal kinase, and extracellular regulated protein kinases). The overexpression of fascin-1 is related to clinicopathologic parameters such as pathological stage, bone or lymph node metastasis, and reduced disease-free survival. Several fascin-1 inhibitors (G2, NP-G2-044) have been evaluated in vitro and in preclinical models. The study proved the promising potential of fascin-1 as a newly developing biomarker and a potential therapeutic target that needs further investigation. The data also highlight the inadequacy of fascin-1 to serve as a novel biomarker for prostate cancer.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qiang Bian
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yankun Gao
- Clinical Medical College, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Qianqian Wang
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiangling Li
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Xiaolei Ma
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Huiyuan Chen
- College of Radiology, Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, People's Republic of China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, Shandong, People's Republic of China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong, People's Republic of China
| |
Collapse
|
6
|
Huang Y, Shan G, Yi Y, Liang J, Hu Z, Bi G, Chen Z, Xi J, Ge D, Wang Q, Tan L, Jiang W, Zhan C. FSCN1 induced PTPRF-dependent tumor microenvironment inflammatory reprogramming promotes lung adenocarcinoma progression via regulating macrophagic glycolysis. Cell Oncol (Dordr) 2022; 45:1383-1399. [PMID: 36223033 DOI: 10.1007/s13402-022-00726-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Macrophages (MΦs) play a dual role in the promotion and suppression of lung adenocarcinoma (LUAD), the function of which is influenced by the metabolic status. The role of protein tyrosine phosphatase receptor type F (PTPRF) in cancer has not been elucidated, and its role in MΦs remains to be seen. METHODS The Seahorse XFe 96 Cell Flow Analyzer detected glucose metabolism in tumor cells and macrophages. The expressions of FSCN1, M-CSF, IL4, PTPRF and IGF1 in macrophages were detected by Western blotting and qRT-PCR. Binding of FSCN1 and IGF1R was detected by co-immunoprecipitation. The tumor status in animals was observed using the IVIS Lumina III imaging system. RESULTS We found that Fascin Actin-Bundling Protein 1 (FSCN1) activates the PI3K-AKT and JAK-STAT signaling pathways in LUAD cells via binding to IGF-1R, thereby promoting the secretion of cytokines such as IL4 and M-CSF. IL4 and M-CSF promote the expression of PTPRF in MΦs, leading to M2 polarization of MΦs by increasing glucose intake and lactate production. In return, M2-type MΦs act on LUAD cells by secreting cytokines such as IGF-1, CCL2, and IL10, which ultimately promote tumor progression. In vivo experiments proved that the knockdown of FSCN1 in A549 cells and PTPRF in MΦs greatly reduced LUAD proliferative and metastatic capacity, which was consistent with the in vitro findings. CONCLUSIONS This study investigated the reprogramming effects of FSCN1 and PTPRF on inflammatory cytokines in the LUAD microenvironment, revealing potential mechanisms by which FSCN1 and PTPRF promote tumor progression and providing a new experimental basis for LUAD treatment.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Zhang N, Gao Y, Bian Q, Wang Q, Shi Y, Zhao Z, Yu H. The role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. Front Oncol 2022; 12:948110. [PMID: 36033434 PMCID: PMC9404296 DOI: 10.3389/fonc.2022.948110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Human cancer statistics report that respiratory related cancers such as lung, laryngeal, oral and nasopharyngeal cancers account for a large proportion of tumors, and tumor metastasis remains the major reason for patient death. The metastasis of tumor cells requires actin cytoskeleton remodeling, in which fascin-1 plays an important role. Fascin-1 can cross-link F-actin microfilaments into bundles and form finger-like cell protrusions. Some studies have shown that fascin-1 is overexpressed in human tumors and is associated with tumor growth, migration and invasion. The role of fascin-1 in respiratory related cancers is not very clear. The main purpose of this study was to provide an updated literature review on the role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. These studies suggested that fascin-1 can serve as an emerging biomarker and potential therapeutic target, and has attracted widespread attention.
Collapse
Affiliation(s)
- Naibin Zhang
- Department of biochemistry, Jining Medical University, Jining, China
| | - Yankun Gao
- Department of biochemistry, Jining Medical University, Jining, China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, China
- Department of Pathophysiology, Weifang Medical University, Weifang, China
| | - Qianqian Wang
- Department of biochemistry, Jining Medical University, Jining, China
| | - Ying Shi
- Department of biochemistry, Jining Medical University, Jining, China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Honglian Yu
- Department of biochemistry, Jining Medical University, Jining, China
- Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Honglian Yu,
| |
Collapse
|