1
|
Chrzan N, Hartman ML. Copper in melanoma: At the crossroad of protumorigenic and anticancer roles. Redox Biol 2025; 81:103552. [PMID: 39970778 DOI: 10.1016/j.redox.2025.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Copper is an essential micronutrient that is a cofactor for various enzymes involved in multiple cellular processes. Melanoma patients have high serum copper levels, and elevated copper concentrations are found in melanoma tumors. Copper influences the activity of several melanoma-related proteins involved in cell survival, proliferation, pigmentation, angiogenesis, and metastasis. Targeting these processes with copper chelators has shown efficacy in reducing tumor growth and overcoming drug resistance. In contrast, excessive copper can also have detrimental effects when imported into melanoma cells. Multiple distinct cellular effects of copper overload, including the induction of different types of cell death, have been reported. Cuproptosis, a novel type of copper-dependent cell death, has been recently described and is associated with the metabolic phenotype. Melanoma cells can switch between glycolysis and oxidative phosphorylation, which are crucial for tumor growth and drug resistance. In this respect, metabolic plasticity might be exploited for the use of copper-delivery strategies, including repurposing of disulfiram, which is approved for the treatment of noncancer patients. In addition, the development of nanomedicines can improve the targeted delivery of copper to melanoma cells and enable the use of these drugs alone or in combination as copper has been shown to complement targeted therapy and immunotherapy in melanoma cells. However, further research is needed to explore the specific mechanisms of both copper restriction and excess copper-induced processes and determine effective biomarkers for predicting treatment sensitivity in melanoma patients. In this review, we discuss the dual role of copper in melanoma biology.
Collapse
Affiliation(s)
- Natalia Chrzan
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
2
|
Huang J, Gao Z, Xuan J, Gao N, Wei C, Gu J. Metabolic insights into tumor lymph node metastasis in melanoma. Cell Oncol (Dordr) 2024; 47:2099-2112. [PMID: 39704926 DOI: 10.1007/s13402-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Although accounting for only a small amount of skin cancers, melanoma contributes prominently to skin cancer-related deaths, which are mostly caused by metastatic diseases, and lymphatic metastasis constitutes the main route. In this review, we concentrate on the metabolic mechanisms of tumor lymph node (LN) metastasis in melanoma. Two hypotheses of melanoma LN metastasis are introduced, which are the premetastatic niche (PMN) and parallel progression model. Dysregulation of oxidative stress, lactic acid concentration, fatty acid synthesis, amino acid metabolism, autophagy, and ferroptosis construct the metabolic mechanisms in LN metastasis of melanoma. Moreover, melanoma cells also promote LN metastasis by interacting with non-tumor cells through metabolic reprogramming in TIME. This review will deepen our understanding of the mechanism of lymph node metastasis in melanoma.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Ningyuan Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
3
|
Aubé F, Fontrodona N, Guiguettaz L, Vallin E, Fabbri L, Lapendry A, Vagner S, Ricci EP, Auboeuf D. Metabolism-dependent secondary effect of anti-MAPK cancer therapy on DNA repair. NAR Cancer 2024; 6:zcae019. [PMID: 38690580 PMCID: PMC11059277 DOI: 10.1093/narcan/zcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.
Collapse
Affiliation(s)
- Fabien Aubé
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Nicolas Fontrodona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Audrey Lapendry
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Stephan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| |
Collapse
|
4
|
Peña-Martín J, Belén García-Ortega M, Palacios-Ferrer JL, Díaz C, Ángel García M, Boulaiz H, Valdivia J, Jurado JM, Almazan-Fernandez FM, Arias Santiago S, Vicente F, Del Val C, Pérez Del Palacio J, Marchal JA. Identification of novel biomarkers in the early diagnosis of malignant melanoma by untargeted liquid chromatography coupled to high-resolution mass spectrometry-based metabolomics: a pilot study. Br J Dermatol 2024; 190:740-750. [PMID: 38214572 DOI: 10.1093/bjd/ljae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues to rise worldwide. If diagnosed at an early stage, it has an excellent prognosis, but mortality increases significantly at advanced stages after distant spread. Unfortunately, early detection of aggressive melanoma remains a challenge. OBJECTIVES To identify novel blood-circulating biomarkers that may be useful in the diagnosis of MM to guide patient counselling and appropriate disease management. METHODS In this study, 105 serum samples from 26 healthy patients and 79 with MM were analysed using an untargeted approach by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to compare the metabolomic profiles of both conditions. Resulting data were subjected to both univariate and multivariate statistical analysis to select robust biomarkers. The classification model obtained from this analysis was further validated with an independent cohort of 12 patients with stage I MM. RESULTS We successfully identified several lipidic metabolites differentially expressed in patients with stage I MM vs. healthy controls. Three of these metabolites were used to develop a classification model, which exhibited exceptional precision (0.92) and accuracy (0.94) when validated on an independent sample. CONCLUSIONS These results demonstrate that metabolomics using LC-HRMS is a powerful tool to identify and quantify metabolites in bodily fluids that could serve as potential early diagnostic markers for MM.
Collapse
Affiliation(s)
- Jesús Peña-Martín
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - María Belén García-Ortega
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - José Luis Palacios-Ferrer
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
- Department of Biochemistry 3 and Immunology, Faculty of Medicine
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| | - Javier Valdivia
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Oncology
| | - José Miguel Jurado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Oncology
| | - Francisco M Almazan-Fernandez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, San Cecilio University Hospital, Granada, Spain
| | - Salvador Arias Santiago
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Coral Del Val
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM)
- Department of Human Anatomy and Embryology, Faculty of Medicine
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat)
| |
Collapse
|
5
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Marocchi F, Palluzzi F, Nicoli P, Melixetian M, Lovati G, Bertalot G, Pece S, Ferrucci PF, Bossi D, Lanfrancone L. Actionable Genetic Screens Unveil Targeting of AURKA, MEK, and Fatty Acid Metabolism as an Alternative Therapeutic Approach for Advanced Melanoma. J Invest Dermatol 2023; 143:1993-2006.e10. [PMID: 37003468 DOI: 10.1016/j.jid.2023.03.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Despite the remarkable improvements achieved in the management of metastatic melanoma, there are still unmet clinical needs. A considerable fraction of patients does not respond to immune and/or targeted therapies owing to primary and acquired resistance, high-grade immune-related adverse events, and a lack of alternative treatment options. To design effective combination therapies, we set up a functional ex vivo preclinical assay on the basis of a drop-out genetic screen in metastatic melanoma patient-derived xenografts. We showed that this approach can be used to isolate actionable vulnerabilities predictive of drug efficacy. In particular, we highlighted that the dual targeting of AURKA and MAPK/extracellular signal-regulated kinase kinase employing the combination of alisertib and trametinib is highly effective in a cohort of metastatic melanoma patient-derived xenografts, both ex vivo and in vivo. Alisertib and trametinib combination therapy outperforms standard-of-care therapy in both BRAF-mutant patient-derived xenografts and targeted therapy-resistant models. Furthermore, alisertib and trametinib treatment modulates several critical cancer pathways, including an early metabolic reprogramming that leads to the transcriptional upregulation of the fatty acid oxidation pathway. This acquired trait unveiled an additional point of intervention for pharmacological targeting, and indeed, the triple combination of alisertib and trametinib with the fatty acid oxidation inhibitor etomoxir proved to be further beneficial, inducing tumor regression and remarkably prolonging the overall survival of the mice.
Collapse
Affiliation(s)
- Federica Marocchi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Fernando Palluzzi
- Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Marine Melixetian
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Bertalot
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Unità Operativa Multizonale di Anatomia Patologica, Azienda Provinciale per i Servizi Sanitari, Trento, Italy; CISMED - Centre for Medical Sciences, University of Trento, Trento, Italy
| | - Salvatore Pece
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Pier Francesco Ferrucci
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.
| |
Collapse
|
7
|
Redondo-Muñoz M, Rodriguez-Baena FJ, Aldaz P, Caballé-Mestres A, Moncho-Amor V, Otaegi-Ugartemendia M, Carrasco-Garcia E, Olias-Arjona A, Lasheras-Otero I, Santamaria E, Bocanegra A, Chocarro L, Grier A, Dzieciatkowska M M, Bigas C, Martin J, Urdiroz-Urricelqui U, Marzo F, Santamaria E, Kochan G, Escors D, Larrayoz IM, Heyn H, D'Alessandro A, Attolini CSO, Matheu A, Wellbrock C, Benitah SA, Sanchez-Laorden B, Arozarena I. Metabolic rewiring induced by ranolazine improves melanoma responses to targeted therapy and immunotherapy. Nat Metab 2023; 5:1544-1562. [PMID: 37563469 PMCID: PMC10513932 DOI: 10.1038/s42255-023-00861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.
Collapse
Grants
- P30 CA046934 NCI NIH HHS
- Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- Departamento de Salud del Gobierno de Navarra, Spain (Grant Ref. No: GºNa 71/17)
- Marta Redondo-Muñoz is funded by a PhD studentship from the Department of Industry of the Government of Navarra, Spain. MRM acknowledges funding from the Grupo Español Multidisciplinar de Melanoma
- The University of Colorado School of Medicine Metabolomics Core is supported in part by the University of Colorado Cancer Center award from the National Cancer Institute P30CA046934
- David Escors Acknowledges funding from The Spanish Association against Cancer (AECC), PROYE16001ESCO), Biomedicine Project Grant from the Department of Health of the Government of Navarre-FEDER funds (BMED 050-2019, 51-2021) ; Strategic projects from the Department of Industry, Government of Navarre (AGATA, Ref. 0011-1411-2020-000013; LINTERNA, Ref. 0011-1411-2020-000033; DESCARTHES, 0011-1411-2019-000058).
- Research in the S.A.B. laboratory is supported partially by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 787041), the Government of Cataluña (SGR grant), the Government of Spain (MINECO), the La Marató/TV3 Foundation, the Foundation Lilliane Bettencourt, the Spanish Association for Cancer Research (AECC) and The Worldwide Cancer Research Foundation (WCRF)
- Work in B.S-L´s lab is funded by:PID2019-106852-RBI00 funded by MCIN/AEI/ 10.13039/501100011033, the Melanoma Research Alliance (https://doi.org/10.48050/pc.gr.91574 to B.S-L) and the FERO Foundation.
Collapse
Affiliation(s)
- Marta Redondo-Muñoz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | | | - Paula Aldaz
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Adriá Caballé-Mestres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Moncho-Amor
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | | | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Ana Olias-Arjona
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Eva Santamaria
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Bocanegra
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Luisa Chocarro
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska M
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Josefina Martin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Florencio Marzo
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Enrique Santamaria
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Grazyna Kochan
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - David Escors
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Ignacio Marcos Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Foundation Rioja Salud, Logroño, Spain
- Unidad Predepartamental de Enfermería, Universidad de La Rioja (UR), Logroño, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Angelo D'Alessandro
- Oncoimmunology Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Claudia Wellbrock
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
- Department of Health Sciences, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | | | - Imanol Arozarena
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.
- Health Research Institute of Navarre (IdiSNA), Pamplona, Spain.
| |
Collapse
|
8
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Zueva AO, Ermakova SP. The Combined Metabolically Oriented Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Its Carboxymethylated Derivative with 2-Deoxy-D-Glucose on Human Melanoma Cells. Int J Mol Sci 2023; 24:12050. [PMID: 37569428 PMCID: PMC10418387 DOI: 10.3390/ijms241512050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity. This work aimed to assess the metabolically oriented effect and mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and its carboxymethylated derivative (ScFCM) in combination with 2-deoxy-D-glucose (2-DG) on the proliferation and colony formation of human melanoma cell lines SK-MEL-28, SK-MEL-5, and RPMI-7951. The metabolic profile of melanoma cells was determined by the glucose uptake and Lactate-GloTM assays. The effect of 2-DG, ScF, ScFCM, and their combination on the proliferation, colony formation, and activity of glycolytic enzymes was assessed by the MTS, soft agar, and Western blot methods, respectively. When applied separately, 2-DG (IC50 at 72 h = 8.7 mM), ScF (IC50 at 72 h > 800 µg/mL), and ScFCM (IC50 at 72 h = 573.9 μg/mL) inhibited the proliferation and colony formation of SK-MEL-28 cells to varying degrees. ScF or ScFCM enhanced the inhibiting effect of 2-DG at low, non-toxic concentrations via the downregulation of Glut 1, Hexokinase II, PKM2, LDHA, and pyruvate dehydrogenase activities. The obtained results emphasize the potential of the use of 2-DG in combination with algal fucoidan or its derivative as metabolic modifiers for inhibition of melanoma SK-MEL-28 cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
9
|
Fratta E, Giurato G, Guerrieri R, Colizzi F, Dal Col J, Weisz A, Steffan A, Montico B. Autophagy in BRAF-mutant cutaneous melanoma: recent advances and therapeutic perspective. Cell Death Discov 2023; 9:202. [PMID: 37386023 DOI: 10.1038/s41420-023-01496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, represents a highly conserved catabolic process that maintains cellular homeostasis. At present, the role of autophagy in cutaneous melanoma (CM) is still controversial, since it appears to be tumor-suppressive at early stages of malignant transformation and cancer-promoting during disease progression. Interestingly, autophagy has been found to be often increased in CM harboring BRAF mutation and to impair the response to targeted therapy. In addition to autophagy, numerous studies have recently conducted in cancer to elucidate the molecular mechanisms of mitophagy, a selective form of mitochondria autophagy, and secretory autophagy, a process that facilitates unconventional cellular secretion. Although several aspects of mitophagy and secretory autophagy have been investigated in depth, their involvement in BRAF-mutant CM biology has only recently emerged. In this review, we aim to overview autophagy dysregulation in BRAF-mutant CM, along with the therapeutic advantages that may arise from combining autophagy inhibitors with targeted therapy. In addition, the recent advances on mitophagy and secretory autophagy involvement in BRAF-mutant CM will be also discussed. Finally, since a number of autophagy-related non-coding RNAs (ncRNAs) have been identified so far, we will briefly discussed recent advances linking ncRNAs to autophagy regulation in BRAF-mutant CM.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, 84081, Baronissi, SA, Italy
- Molecular Pathology and Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' University of Salerno and Rete Oncologica Campana, 84131, Salerno, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
10
|
Yang Y, Qin H, Ding M, Ji C, Chen W, Diao W, Yin H, Chen M, Gan W, Guo H. Small ankyrin 1 (sANK1) promotes docetaxel resistance in castration-resistant prostate cancer cells by enhancing oxidative phosphorylation. FEBS Open Bio 2022; 13:257-269. [PMID: 36508323 PMCID: PMC9900087 DOI: 10.1002/2211-5463.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/09/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Docetaxel (DTX) plays an important role in treating advanced prostate cancer (PCa). However, nearly all patients receiving DTX therapy ultimately progress to DTX resistance. How to address DTX resistance in PCa remains a key challenge for all urologists. Small ankyrin 1 (sAnk1) is an integral membrane protein in the endoplasmic reticulum. In the present study, we identified that sAnk1 is upregulated in PCa tissues and is positively associated with DTX therapy resistance in PCa. Further investigation demonstrated that overexpression of sAnk1 can significantly increase the DTX-resistant ability of PCa cells in vitro and in vivo. In addition, overexpression of sAnk1 could enhance oxidative phosphorylation (OXPHOS) levels in PCa cells, which was consistent with the higher OXPHOS levels observed in DTX-resistant PCa cells as compared to DTX-sensitive PCa cells. sAnk1 was also found to interact with polypyrimidine-tract-binding protein (PTBP1), an alternative splicing factor, and suppressed PTBP1-mediated alternative splicing of the pyruvate kinase gene (PKM). Thus, overexpression of sAnk1 decreased the ratio of PKM2/PKM1, enhanced the OXPHOS level, and ultimately promoted the resistance of PCa cells to DTX. In summary, our data suggest that sAnk1 enhances DTX resistance in PCa cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Changwei Ji
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Haoli Yin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Mengxia Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Weidong Gan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of UrologyNanjing UniversityChina
| |
Collapse
|
11
|
Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules 2022; 27:molecules27227800. [PMID: 36431901 PMCID: PMC9698468 DOI: 10.3390/molecules27227800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.
Collapse
|
12
|
Vergani E, Beretta GL, Aloisi M, Costantino M, Corno C, Frigerio S, Tinelli S, Dugo M, Accattatis FM, Granata A, Arnaboldi L, Rodolfo M, Perego P, Gatti L. Targeting of the Lipid Metabolism Impairs Resistance to BRAF Kinase Inhibitor in Melanoma. Front Cell Dev Biol 2022; 10:927118. [PMID: 35912092 PMCID: PMC9326082 DOI: 10.3389/fcell.2022.927118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Drug resistance limits the achievement of persistent cures for the treatment of melanoma, in spite of the efficacy of the available drugs. The aim of the present study was to explore the involvement of lipid metabolism in melanoma resistance and assess the effects of its targeting in cellular models of melanoma with acquired resistance to the BRAF-inhibitor PLX4032/Vemurafenib. Since transcriptional profiles pointed to decreased cholesterol and fatty acids synthesis in resistant cells as compared to their parental counterparts, we examined lipid composition profiles of resistant cells, studied cell growth dependence on extracellular lipids, assessed the modulation of enzymes controlling the main nodes in lipid biosynthesis, and evaluated the effects of targeting Acetyl-CoA Acetyltransferase 2 (ACAT2), the first enzyme in the cholesterol synthesis pathway, and Acyl-CoA Cholesterol Acyl Transferase (ACAT/SOAT), which catalyzes the intracellular esterification of cholesterol and the formation of cholesteryl esters. We found a different lipid composition in the resistant cells, which displayed reduced saturated fatty acids (SFA), increased monounsaturated (MUFA) and polyunsaturated (PUFA), and reduced cholesteryl esters (CE) and triglycerides (TG), along with modulated expression of enzymes regulating biosynthetic nodes of the lipid metabolism. The effect of tackling lipid metabolism pathways in resistant cells was evidenced by lipid starvation, which reduced cell growth, increased sensitivity to the BRAF-inhibitor PLX4032, and induced the expression of enzymes involved in fatty acid and cholesterol metabolism. Molecular targeting of ACAT2 or pharmacological inhibition of SOAT by avasimibe showed antiproliferative effects in melanoma cell lines and a synergistic drug interaction with PLX4032, an effect associated to increased ferroptosis. Overall, our findings reveal that lipid metabolism affects melanoma sensitivity to BRAF inhibitors and that extracellular lipid availability may influence tumor cell response to treatment, a relevant finding in the frame of personalized therapy. In addition, our results indicate new candidate targets for drug combination treatments.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giovanni L. Beretta
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mariachiara Aloisi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Matteo Costantino
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Corno
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Simona Frigerio
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Stella Tinelli
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences DISFeB, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences DISFeB, Università degli Studi di Milano, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- *Correspondence: Monica Rodolfo,
| | - Paola Perego
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Gatti
- Neurobiology Laboratory, Department of Clinical Neurosciences, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
13
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
14
|
Kang Z, Wang J, Huang W, Liu J, Yan W. Identification of Transcriptional Heterogeneity and Construction of a Prognostic Model for Melanoma Based on Single-Cell and Bulk Transcriptome Analysis. Front Cell Dev Biol 2022; 10:874429. [PMID: 35646893 PMCID: PMC9136400 DOI: 10.3389/fcell.2022.874429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma is one of the most aggressive and heterogeneous life-threatening cancers. However, the heterogeneity of melanoma and its impact on clinical outcomes are largely unknown. In the present study, intra-tumoral heterogeneity of melanoma cell subpopulations was explored using public single-cell RNA sequencing data. Marker genes, transcription factor regulatory networks, and gene set enrichment analysis were further analyzed. Marker genes of each malignant cluster were screened to create a prognostic risk score, and a nomogram tool was further generated to predict the prognosis of melanoma patients. It was found that malignant cells were divided into six clusters by different marker genes and biological characteristics in which the cell cycling subset was significantly correlated with unfavorable clinical outcomes, and the Wnt signaling pathway-enriched subset may be correlated with the resistance to immunotherapy. Based on the malignant marker genes, melanoma patients in TCGA datasets were divided into three groups which had different survival rates and immune infiltration states. Five malignant cell markers (PSME2, ARID5A, SERPINE2, GPC3, and S100A11) were selected to generate a prognostic risk score. The risk score was associated with overall survival independent of routine clinicopathologic characteristics. The nomogram tool showed good performance with an area under the curve value of 0.802.
Collapse
Affiliation(s)
- Zijian Kang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wending Huang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Wending Huang, ; Jianmin Liu, ; Wangjun Yan,
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wending Huang, ; Jianmin Liu, ; Wangjun Yan,
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Wending Huang, ; Jianmin Liu, ; Wangjun Yan,
| |
Collapse
|
15
|
Tímár J, Ladányi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci 2022; 23:5384. [PMID: 35628196 PMCID: PMC9140388 DOI: 10.3390/ijms23105384] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Similar to other malignancies, TCGA network efforts identified the detailed genomic picture of skin melanoma, laying down the basis of molecular classification. On the other hand, genome-wide association studies discovered the genetic background of the hereditary melanomas and the susceptibility genes. These genetic studies helped to fine-tune the differential diagnostics of malignant melanocytic lesions, using either FISH tests or the myPath gene expression signature. Although the original genomic studies on skin melanoma were mostly based on primary tumors, data started to accumulate on the genetic diversity of the progressing disease. The prognostication of skin melanoma is still based on staging but can be completed with gene expression analysis (DecisionDx). Meanwhile, this genetic knowledge base of skin melanoma did not turn to the expected wide array of target therapies, except the BRAF inhibitors. The major breakthrough of melanoma therapy was the introduction of immune checkpoint inhibitors, which showed outstanding efficacy in skin melanoma, probably due to their high immunogenicity. Unfortunately, beyond BRAF, KIT mutations and tumor mutation burden, no clinically validated predictive markers exist in melanoma, although several promising biomarkers have been described, such as the expression of immune-related genes or mutations in the IFN-signaling pathway. After the initial success of either target or immunotherapies, sooner or later, relapses occur in the majority of patients, due to various induced genetic alterations, the diagnosis of which could be developed to novel predictive genetic markers.
Collapse
Affiliation(s)
- József Tímár
- 2nd Department of Pathology, Semmelweis University, 1191 Budapest, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| |
Collapse
|
16
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|