1
|
Wang H, Qiao S, Huang L, Zhang Z, Wang J, Tian W. PTPN9 promotes melanoma progression by regulating the ferroptosis pathway. FASEB J 2025; 39:e70394. [PMID: 39937573 DOI: 10.1096/fj.202402285r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
In recent years, there has been a gradual increase in the incidence and mortality rates of melanoma, posing a significant threat to human health and life. Protein tyrosine phosphatases (PTPNs) have been implicated in the progression of various human cancers, including breast, lung, and cervical cancer. To investigate PTPN9 expression in melanoma, impacting the disease's survival and prognosis. Our study, which involved an analysis of The Cancer Genome Atlas database and immunohistochemical staining of pathological sections, identified an upregulation of PTPN9 expression in melanoma, impacting the disease's survival and prognosis. At the cellular level, we investigated the effects of PTPN9 on the proliferation, invasion, and metastasis of A375 and SK-MEL-28 cells. Through various experimental techniques such as Western blot protein detection, electron microscopy, and oil red O staining, we observed that PTPN9 potentially contributes to the development of skin cutaneous melanoma (SKCM) by regulating ferroptosis-related proteins ACSL4, FTH1, and P53, thereby influencing lipid metabolism. The results of this study highlight the unique role of PTPN9 in SKCM and suggest its potential as a biomarker for the disease.
Collapse
Affiliation(s)
- Hongmei Wang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Sen Qiao
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Lingyan Huang
- Pathological Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhengping Zhang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiao Wang
- Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Wenxiu Tian
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| |
Collapse
|
2
|
Vízkeleti L, Papp O, Doma V, Gil J, Markó-Varga G, Kovács SA, Győrffy B, Kárpáti S, Tímár J. Identification of genetic fingerprint of type I interferon therapy in visceral metastases of melanoma. Sci Rep 2024; 14:26540. [PMID: 39489756 PMCID: PMC11532416 DOI: 10.1038/s41598-024-77285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Malignant melanoma is a difficult-to-treat skin cancer with increasing incidence worldwide. Although type-I interferon (IFN) is no longer part of guidelines, several melanoma patients are treated with type-I interferon (IFN) at some point of the disease, potentially affecting its genetic progression. We run genome-wide copy number variation (CNV) analysis on previously type-I IFN-treated (n = 17) and control (n = 11) visceral metastases of melanoma patients. Results were completed with data from the TCGA and MM500 databases. We identified metastasis- and brain metastasis-specific gene signatures mostly affected by CN gains. Some cases were genetically resistant to IFN showing characteristic gene alterations (e.g. ABCA4 or ZEB2 gain and alterations of DNA repair genes). Analysis of a previously identified type-I IFN resistance gene set indicates that only a proportion of these genes was exclusive for the IFN-treated metastases reflecting a possible selective genomic pressure of endogenous IFNs during progression. Our data suggest that previous type-I IFN treatment and/or endogenous IFN production by immune response affect genomic progression of melanoma which may have clinical relevance, potentially influence immune checkpoint regulation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
| | - Orsolya Papp
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
- Turbine Simulated Cell Technologies, Budapest, 1027, Hungary
| | - Viktória Doma
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary
- Department of Dermatology, Venerology and Dermato-Oncology, Faculty of Medicine, Semmelweis University, 1085, Budapest, Hungary
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 223 63, Lund, Sweden
| | - György Markó-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 223 63, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- 1St Department of Surgery, Tokyo Medical University, Tokyo, 160-8582, Japan
| | - Szonja A Kovács
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venerology and Dermato-Oncology, Faculty of Medicine, Semmelweis University, 1085, Budapest, Hungary
| | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Üllői Str. 93., 1091, Budapest, Hungary.
| |
Collapse
|
3
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Tímár J, Honn KV, Hendrix MJC, Marko-Varga G, Jalkanen S. Newly identified form of phenotypic plasticity of cancer: immunogenic mimicry. Cancer Metastasis Rev 2023; 42:323-334. [PMID: 36754910 PMCID: PMC10014767 DOI: 10.1007/s10555-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Cancer plasticity is now a recognized new hallmark of cancer which is due to disturbances of cell differentiation programs. It is manifested not only in various forms like the best-known epithelial-mesenchymal transition (EMT) but also in vasculogenic and megakaryocytic mimicries regulated by EMT-specific or less-specific transcription factors such as HIF1a or STAT1/2. Studies in the past decades provided ample data that cancer plasticity can be manifested also in the expression of a vast array of immune cell genes; best-known examples are PDL1/CD274, CD47, or IDO, and we termed it immunogenic mimicry (IGM). However, unlike other types of plasticities which are epigenetically regulated, expression of IGM genes are frequently due to gene amplifications. It is important that the majority of the IGM genes are regulated by interferons (IFNs) suggesting that their protein expressions are regulated by the immune microenvironment. Most of the IGM genes have been shown to be involved in immune escape of cancers broadening the repertoire of these mechanisms and offering novel targets for immunotherapeutics.
Collapse
Affiliation(s)
- József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Kenneth V Honn
- Departments of Pathology, Oncology and Chemistry, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sirpa Jalkanen
- Medicity Research Laboratories, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Metastatic Progression of Human Melanoma. Cancers (Basel) 2023; 15:cancers15041225. [PMID: 36831566 PMCID: PMC9954442 DOI: 10.3390/cancers15041225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
This Topical Collection, comprising 13 papers (10 original articles and 3 reviews), addresses various aspects of the field of melanoma progression: genomic and proteomic approaches, experimental studies, the questions of sentinel lymph node dissection, and metastasis formation of uveal and conjunctival melanomas is also discussed [...].
Collapse
|
6
|
Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022; 13:1000927. [PMID: 36131942 PMCID: PMC9483911 DOI: 10.3389/fimmu.2022.1000927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Skin malignant melanoma is a highly aggressive skin tumor, which is also a major cause of skin cancer-related mortality. It can spread from a relatively small primary tumor and metastasize to multiple locations, including lymph nodes, lungs, liver, bone, and brain. What’s more metastatic melanoma is the main cause of its high mortality. Among all organs, the lung is one of the most common distant metastatic sites of melanoma, and the mortality rate of melanoma lung metastasis is also very high. Elucidating the mechanisms involved in the pulmonary metastasis of cutaneous melanoma will not only help to provide possible explanations for its etiology and progression but may also help to provide potential new therapeutic targets for its treatment. Increasing evidence suggests that tumor-associated macrophages (TAMs) play an important regulatory role in the migration and metastasis of various malignant tumors. Tumor-targeted therapy, targeting tumor-associated macrophages is thus attracting attention, particularly for advanced tumors and metastatic tumors. However, the relevant role of tumor-associated macrophages in cutaneous melanoma lung metastasis is still unclear. This review will present an overview of the origin, classification, polarization, recruitment, regulation and targeting treatment of tumor-associated macrophages, as well as the soluble mediators involved in these processes and a summary of their possible role in lung metastasis from cutaneous malignant melanoma. This review particularly aims to provide insight into mechanisms and potential therapeutic targets to readers, interested in pulmonary metastasis melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| |
Collapse
|
7
|
Tímár J, Ladányi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci 2022; 23:5384. [PMID: 35628196 PMCID: PMC9140388 DOI: 10.3390/ijms23105384] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Similar to other malignancies, TCGA network efforts identified the detailed genomic picture of skin melanoma, laying down the basis of molecular classification. On the other hand, genome-wide association studies discovered the genetic background of the hereditary melanomas and the susceptibility genes. These genetic studies helped to fine-tune the differential diagnostics of malignant melanocytic lesions, using either FISH tests or the myPath gene expression signature. Although the original genomic studies on skin melanoma were mostly based on primary tumors, data started to accumulate on the genetic diversity of the progressing disease. The prognostication of skin melanoma is still based on staging but can be completed with gene expression analysis (DecisionDx). Meanwhile, this genetic knowledge base of skin melanoma did not turn to the expected wide array of target therapies, except the BRAF inhibitors. The major breakthrough of melanoma therapy was the introduction of immune checkpoint inhibitors, which showed outstanding efficacy in skin melanoma, probably due to their high immunogenicity. Unfortunately, beyond BRAF, KIT mutations and tumor mutation burden, no clinically validated predictive markers exist in melanoma, although several promising biomarkers have been described, such as the expression of immune-related genes or mutations in the IFN-signaling pathway. After the initial success of either target or immunotherapies, sooner or later, relapses occur in the majority of patients, due to various induced genetic alterations, the diagnosis of which could be developed to novel predictive genetic markers.
Collapse
Affiliation(s)
- József Tímár
- 2nd Department of Pathology, Semmelweis University, 1191 Budapest, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| |
Collapse
|