1
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Liu Y, Teng X, Yan Y, Zhao S, Wang G. Dexmedetomidine promotes necroptosis by upregulating PARP1 in non-small cell lung cancer. Biotechnol Genet Eng Rev 2024; 40:1281-1301. [PMID: 37066722 DOI: 10.1080/02648725.2023.2193469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
The score and prognostic value of necroptosis were analyzed in the TCGA and GSE120622 datasets. Necroptosis has the highest correlation with the immune microenvironment, and the high score in NSCLC correlates with poor prognosis. Differentially expressed genes between non-small cell lung cancer (NSCLC) and controls in both datasets were identified and subjected to construct co-expression networks, respectively. Black and blue modules were selected because of high correction with necroptosis. The intersected two module genes were mainly involved in immune and inflammatory response, cell cycle process and DNA replication. Nine marker genes of necroptosis were identified in these modules and considered as candidate genes. Based on candidate genes, we identified two clusters utilizing concordance clustering, additionally dividing NSCLC samples into high- and low-risk groups. There were significant differences in overall survival between two clusters and between high- and low-risk groups. Furthermore, PARP1 was found among the candidate genes to be the target gene of dexmedetomidine acting on necroptosis. Molecular experimental results found that PARP1 was highly expressed in the dexmedetomidine treated NSCLC compared with the NSCLC. Candidate genes associated with necroptosis may provide a powerful prognostic tool for precision oncology. Dexmedetomidine may target PARP1 to promote necroptosis and then affect NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaodan Teng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yubo Yan
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Su Zhao
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Fu X, Shi Y, Gu Z, Zang H, Li L, Wang Q, Wang Y, Zhao X, Wu H, Qiu S, Zhang Y, Zhou J, Chen X, Shen H, Lin G. Immunotherapeutic hydrogel for co-delivery of STAT3 siRNA liposomes and lidocaine hydrochloride for postoperative comprehensive management of NSCLC in a single application. Asian J Pharm Sci 2024; 19:100925. [PMID: 38966285 PMCID: PMC11222805 DOI: 10.1016/j.ajps.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite standard treatment for non-small cell lung cancer (NSCLC) being surgical resection, cancer recurrence and complications, such as induction of malignant pleural effusion (MPE) and significant postoperative pain, usually result in treatment failure. In this study, an alginate-based hybrid hydrogel (SOG) is developed that can be injected into the resection surface of the lungs during surgery. Briefly, endoplasmic reticulum-modified liposomes (MSLs) pre-loaded with the signal transducer and activator of transcription 3 (STAT3) small interfering RNA and lidocaine hydrochloride are encapsulated in SOG. Once applied, MSLs strongly downregulated STAT3 expression in the tumor microenvironment, resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype. Meanwhile, the release of lidocaine hydrochloride (LID) was beneficial for pain relief and natural killer cell activation. Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life, including reduced MPE volume and pain relief in orthotopic NSCLC mouse models, even with a single administration. MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC, and may alter the treatment paradigms for other cancers.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingjie Wang
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250063, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hang Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shengnan Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yankun Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiamin Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiangqin Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hua Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guimei Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Das R, Woo J. Identifying the Multitarget Pharmacological Mechanism of Action of Genistein on Lung Cancer by Integrating Network Pharmacology and Molecular Dynamic Simulation. Molecules 2024; 29:1913. [PMID: 38731403 PMCID: PMC11085736 DOI: 10.3390/molecules29091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Food supplements have become beneficial as adjuvant therapies for many chronic disorders, including cancer. Genistein, a natural isoflavone enriched in soybeans, has gained potential interest as an anticancer agent for various cancers, primarily by modulating apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. However, in lung cancer, the exact impact and mechanism of action of genistein still require clarification. To provide more insight into the mechanism of action of genistein, network pharmacology was employed to identify the key targets and their roles in lung cancer pathogenesis. Based on the degree score, the hub genes AKT1, CASP3, EGFR, STAT3, ESR1, SRC, PTGS2, MMP9, PRAG, and AR were significantly correlated with genistein treatment. AKT1, EGFR, and STAT3 were enriched in the non-small cell lung cancer (NSCLC) pathway according to Kyoto Encyclopedia of Genes and Genomes analysis, indicating a significant connection to lung cancer development. Moreover, the binding affinity of genistein to NSCLC target proteins was further verified by molecular docking and molecular dynamics simulations. Genistein exhibited potential binding to AKT1, which is involved in apoptosis, cell migration, and metastasis, thus holding promise for modulating AKT1 function. Therefore, this study aimed to investigate the mechanism of action of genistein and its therapeutic potential for the treatment of NSCLC.
Collapse
Affiliation(s)
- Raju Das
- Department of Physiology, College of Medicine,, Dongguk University Wise, Gyeongju 38066, Republic of Korea;
| | - Joohan Woo
- Department of Physiology, College of Medicine,, Dongguk University Wise, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), College of Medicine, Dongguk University Wise, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Medical Cannabis Research Center, College of Medicine, Dongguk University Wise, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
5
|
Zhang W, Ding M, Feng Y, Cai S, Luo Z, Shan J, Di L. Modulation of cellular metabolism and alleviation of bacterial dysbiosis by Aconiti Lateralis Radix Praeparata in non-small cell lung cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155099. [PMID: 38412665 DOI: 10.1016/j.phymed.2023.155099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 09/17/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a highly prevalent and fatal form of lung cancer. In China, Aconiti Lateralis Radix Praeparata (Fuzi in Chinese), derived from the lateral root of Aconitum carmichaeli Debx. (Ranunculaceae, Aconitum), is extensively prescribed to treat cancer in traditional medicine and clinical practice. However, the precise mechanism by which Fuzi treats NSCLC remains unknown. PURPOSE This article aims to assess the efficacy of Fuzi against NSCLC and elucidate its underlying mechanism. METHODS Marker ingredients of Fuzi decoction were quantified using UPLC-TSQ-MS. The effectiveness of Fuzi on NSCLC was evaluated using a xenograft mouse model. Subsequently, a comprehensive approach involving network pharmacology, serum metabolomics, and 16S rDNA sequencing was employed to investigate the anti-NSCLC mechanism of Fuzi. RESULTS Pharmacological evaluation revealed significant tumour growth inhibition by Fuzi, accompanied by minimal toxicity. Network pharmacology identified 29 active Fuzi compounds influencing HIF-1, PI3K/Akt signalling, and central carbon metabolism in NSCLC. Integrating untargeted serum metabolomics highlighted 30 differential metabolites enriched in aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism, and the tricarboxylic acid (TCA) cycle. Targeted serum metabolomics confirmed elevated glucose content and reduced levels of pyruvate, lactate, citrate, α-ketoglutarate, succinate, fumarate, and malate following Fuzi administration. Furthermore, 16S rDNA sequencing assay showed that Fuzi ameliorated the dysbiosis after tumorigenesis, decreased the abundance of Proteobacteria, and increased that of Firmicutes and Bacteriodetes. PICRUSt analysis revealed that Fuzi modulated the pentose phosphate pathway of the gut microbiota. Spearman correlation showed that Proteobacteria and Escherichia_Shigella accelerated the TCA cycle, whereas Bacteroidota, Bacteroides, and Lachnospiraceae_NK4A136_group suppressed the TCA cycle. CONCLUSIONS This study firstly introduces a novel NSCLC mechanism involving Fuzi, encompassing energy metabolism and intestinal flora. It clarifies the pivotal role of the gut microbiota in treating NSCLC and modulating the TCA cycle. Moreover, these findings offer valuable insights for clinical practices and future research of Fuzi against NSCLC.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| | - Menglei Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China; Department of Pharmacy, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Yaru Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Shuhui Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Zichen Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
6
|
Zhao Q, Bai L, Zhu D, Li T, Xu J, Xu Y, Zhou X. Clinical efficacy and potential mechanism of ginseng polysaccharides in the treatment of non-small cell lung cancer based on meta-analysis associated with network pharmacology. Heliyon 2024; 10:e27152. [PMID: 38496882 PMCID: PMC10944195 DOI: 10.1016/j.heliyon.2024.e27152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Background The ginseng polysaccharide injection is a well-known traditional Chinese medicine often employed as a supplementary treatment for cancer. This treatment can not only alleviate the adverse effects caused by tumor radiotherapy and chemotherapy but also enhance the immune system of individuals diagnosed with lung cancer. It is important to acknowledge the efficacy of ginseng polysaccharide injection in the treatment of non-small cell lung cancer (NSCLC). However, these small-sample studies may have certain biases, and the underlying mechanisms of ginseng polysaccharides therapy for NSCLC are still unclear. Methods The present study involved a systematic review of the literature on randomized controlled trials (RCTs) focusing on using ginseng polysaccharide injection as a therapeutic approach for NSCLC. Seven databases were searched for eligible studies published before April 2023. Two researchers independently managed data extraction, risk of bias assessment, and data analyses using RevMan 5.3 software. In network pharmacology, we thoroughly searched the relevant literature on ginseng polysaccharides (GPs) and the PubChem database. This search aimed to identify the main active ingredients and targets associated with ginseng polysaccharides. Subsequently, we compared these targets with those of NSCLC and utilized bioinformatics techniques to analyze and explore their potential interactions. Results A total of 11 RCTs involving 845 patients with NSCLC were included in the meta-analysis. The meta-analysis revealed that ginseng polysaccharide injection combined significantly improved the objective response rate [RR = 1.45, 95% CI (1.26, 1.67), P < 0.00001]. Furthermore, it was observed that ginseng polysaccharide injection increased the serum levels of CD4+ T-lymphocytes (CD4+ T) [MD = 8.98, 95% CI (5.18, 12.78), P < 0.00001], and decreased the serum levels of CD8+ T-lymphocytes (CD8+ T) [MD = -2.68, 95% CI (-4.66, -0.70), P = 0.008]. Through network pharmacology analysis, a total of 211 target genes of GPs and 81 common targets were identified. GAPDH, EGFR, VEGFA, JUN, SRC, CASP3, STAT3, CCND1, HSP90AA1, and MMP9 were identified as the core target proteins. Additionally, KEGG enrichment analysis revealed 122 relevant signaling pathways, including Pathways in cancer, PD-L1 expression and PD-1 checkpoint pathway in cancer, and Proteoglycans in cancer. Conclusion Ginseng polysaccharide injection can improve the ORR of patients with NSCLC, increase the serum levels of CD4+ T, and decrease the serum levels of CD8+ T. The potential mechanism may be associated with the PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Le Bai
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Dongwei Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Tingyuan Li
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Jie Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yong Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
7
|
Liang Z, Chen Q, Pan L, She X, Chen T. Mebendazole induces apoptosis and inhibits migration via the reactive oxygen species-mediated STAT3 signaling downregulation in non-small cell lung cancer. J Thorac Dis 2024; 16:1412-1423. [PMID: 38505087 PMCID: PMC10944755 DOI: 10.21037/jtd-23-1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024]
Abstract
Background The incidence and mortality of non-small cell lung cancer (NSCLC) are extremely high. Previous research has confirmed that the signal transducer and activator of the transcription 3 (STAT3) protein critically participate in the tumorigenesis of NSCLC. Mebendazole (MBZ) has exerts a larger number of pharmacological activities and has anticancer effects in lung cancer, but its mechanism of action remains unclear. This study thus aimed to clarify the impacts of MBZ on NSCLC cell. Methods Cell proliferation, migration, and apoptosis were investigated via cell counting kit 8 (CCK-8) assay, Transwell assay, colony formation assay, wound-healing assay, and flow cytometry. Reactive oxygen species (ROS) were detected with a multifunctional microplate reader. Markers of cell migration and apoptosis were detected with Western blotting. The transcriptional activity of STAT3 was detected via luciferase assay. ROS scavenger N-acetylcysteine (NAC) was used to determine the effect of MBZ on NSCLC via ROS-regulated STAT3 inactivation and apoptosis. A xenograft model was constructed in vivo to investigate the role of MBZ in NSCLC tumor growth. Results The findings demonstrated that MBZ inhibited NSCLC cell proliferation and migration while promoting apoptosis through triggering ROS generation. In addition, the Janus kinase 2 (JAK2)-STAT3 signaling pathway was abrogated with the treatment of MBZ. NAC could distinctly weaken MBZ-induced apoptosis and STAT3 inactivation. Moreover, MBZ inhibited the tumor growth of NSCLC in vivo. Conclusions In summary, MBZ inhibited NSCLC cell viability and migration by inducing cell apoptosis via the ROS-JAK2-STAT3 signaling pathway. These data provide a theoretical basis for the use of MBZ in treating NSCLC.
Collapse
Affiliation(s)
- Zhipan Liang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qiuyun Chen
- Department of Clinical Nursing, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Liuying Pan
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiaowei She
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tengfei Chen
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
8
|
Jin X, Shang B, Wang J, Sun J, Li J, Liang B, Wang X, Su L, You W, Jiang S. Farnesoid X receptor promotes non-small cell lung cancer metastasis by activating Jak2/STAT3 signaling via transactivation of IL-6ST and IL-6 genes. Cell Death Dis 2024; 15:148. [PMID: 38360812 PMCID: PMC10869786 DOI: 10.1038/s41419-024-06495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Metastasis accounts for the majority of cases of cancer recurrence and death in patients with advanced non-small cell lung cancer (NSCLC). Farnesoid X Receptor (FXR) is a bile acid nuclear receptor that was recently found to be upregulated in NSCLC tissues. However, whether and how FXR regulates NSCLC metastasis remains unclear. In the present study, it was found that FXR promoted the migration, invasion, and angiogenic ability of NSCLC cells in vitro, and increased NSCLC metastasis in a mouse model in vivo. Mechanistic investigation demonstrated that FXR specifically bound to the promoters of IL-6ST and IL-6 genes to upregulate their transcription, thereby leading to activation of the Jak2/STAT3 signaling pathway, which facilitated tumor migration, invasion, and angiogenesis in NSCLC. Notably, Z-guggulsterone, a natural FXR inhibitor, significantly reduced FXRhigh NSCLC metastasis, and decreased the expression of FXR, IL-6, IL-6ST, and p-STAT3 in the mouse model. Clinical analysis verified that FXR was positively correlated with IL-6, IL-6ST and p-STAT3 expression in NSCLC patients, and was indicative of a poor prognosis. Collectively, these results highlight a novel FXR-induced IL-6/IL-6ST/Jak2/STAT3 axis in NSCLC metastasis, and a promising therapeutic means for treating FXRhigh metastatic NSCLC.
Collapse
Affiliation(s)
- Xiuye Jin
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Shanxi, 710100, China
| | - Bin Shang
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Junren Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Public Health Clinical Center, Jinan, Shandong, 250013, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Xingguang Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| |
Collapse
|
9
|
Razzaq A, Disoma C, Zhou Y, Tao S, Chen Z, Liu S, Zheng R, Zhang Y, Liao Y, Chen X, Liu S, Dong Z, Xu L, Deng X, Li S, Xia Z. Targeting epidermal growth factor receptor signalling pathway: A promising therapeutic option for COVID-19. Rev Med Virol 2024; 34:e2500. [PMID: 38126937 DOI: 10.1002/rmv.2500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously producing new variants, necessitating effective therapeutics. Patients are not only confronted by the immediate symptoms of infection but also by the long-term health issues linked to long COVID-19. Activation of epidermal growth factor receptor (EGFR) signalling during SARS-CoV-2 infection promotes virus propagation, mucus hyperproduction, and pulmonary fibrosis, and suppresses the host's antiviral response. Over the long term, EGFR activation in COVID-19, particularly in COVID-19-induced pulmonary fibrosis, may be linked to the development of lung cancer. In this review, we have summarised the significance of EGFR signalling in the context of SARS-CoV-2 infection. We also discussed the targeting of EGFR signalling as a promising strategy for COVID-19 treatment and highlighted erlotinib as a superior option among EGFR inhibitors. Erlotinib effectively blocks EGFR and AAK1, thereby preventing SARS-CoV-2 replication, reducing mucus hyperproduction, TNF-α expression, and enhancing the host's antiviral response. Nevertheless, to evaluate the antiviral efficacy of erlotinib, relevant clinical trials involving an appropriate patient population should be designed.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Department of Biology, College of Natural Sciences and Mathematics, Mindanao State University, Marawi City, Philippines
| | - Yuzheng Zhou
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Siyi Tao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zongpeng Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sixu Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Rong Zheng
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yongxing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yujie Liao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sijie Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zijun Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liangtao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Shanni Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Centre for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
Guo YQ, Gan MF, Bao JQ, Zhou HX, Yang J, Dai CJ, Zheng JM. KDF1 Promoted Proliferation, Migration and Invasion of Lung Adenocarcinoma Cells through Activating STAT3 and AKT Pathway. Biomedicines 2023; 11:3194. [PMID: 38137415 PMCID: PMC10740774 DOI: 10.3390/biomedicines11123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
KDF1 has been reported to be correlated with carcinogenesis. However, its role and mechanism are far from clear. To explore the possible role and underlying mechanism of KDF1 in lung adenocarcinoma (LUAD), we investigated KDF1 expression in LUAD tissues and the influence of KDF1 in the phenotype of LUAD cells (A549 and PC-9) as well as the underlying mechanism. Compared to non-tumor lung epithelial cells, KDF1 was upregulated in the cancer cells of the majority of LUAD patients, and its expression was correlated with tumor size. Patients with enhanced KDF1 in cancer cells (compared with paired adjacent non-neoplastic lung epithelial cells) had shorter overall survival than patients with no increased KDF1 in cancer cells. Knockdown of KDF1 inhibited the migration, proliferation and invasion of LUAD cells in vitro. And overexpression of KDF1 increased the growth of the subcutaneous tumors in mice. In terms of molecular mechanisms, overexpression of KDF1 induced the expression of AKT, p-AKT and p-STAT3. In KDF1-overexpressing A549 cells, inhibition of the STAT3 pathway decreased the level of AKT and p-AKT, whereas inhibition of the AKT pathway had no effect on the activation of STAT3. Inhibition of STAT3 or AKT pathways reversed the promoting effects of KDF1 overexpression on the LUAD cell phenotype and STAT3 inhibition appeared to have a better effect. Finally, in the cancer cells of LUAD tumor samples, the KDF1 level was observed to correlate positively with the level of p-STAT3. All these findings suggest that KDF1, which activates STAT3 and the downstream AKT pathway in LUAD, acts as a tumor-promoting factor and may represent a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing-Min Zheng
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai 317000, China
| |
Collapse
|
11
|
Zhang C, Sun Q, Zhao J, Jiang N, Hao Y, Luo J, Karim S, Wu L, de Perrot M, Peng C, Zhao X. JSI-124 inhibits cell proliferation and tumor growth by inducing autophagy and apoptosis in murine malignant mesothelioma. Mol Carcinog 2023; 62:1888-1901. [PMID: 37642305 DOI: 10.1002/mc.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Malignant pleural mesothelioma (MPM), mainly caused by asbestos exposure, has a poor prognosis and lacks effective treatment compared with other cancer types. The intracellular transcription factor signal transducer and activator of transcription 3 (STAT3) is overexpressed and hyperactivated in most human cancers. In this study, the role of STAT3 in murine MPM was examined. Inhibition of the Janus kinase 2 (JAK2)/STAT3 pathway with the selective inhibitor JSI-124 has an antitumor effect in murine MPM. Specifically, we demonstrated that JSI-124 inhibits murine MPM cell growth and induces apoptotic and autophagic cell death. Exposure of RN5 and AB12 cells to JSI-124 resulted in apoptosis via the Bcl-2 family of proteins. JSI-124 triggered autophagosome formation, accumulation, and conversion of LC3I to LC3II. Autophagy inhibitors, Chloroquine (CQ) and Bafilomycin A1 (Baf-A1), inhibited autophagy and sensitized RN5 and AB12 cells to JSI-124-induced apoptosis. Our data indicate that JSI-124 is a promising therapeutic agent for MPM treatment.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qifeng Sun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ning Jiang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yingtao Hao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Saraf Karim
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chuanliang Peng
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
12
|
Li J, Liu Y, Zeng W, Wu Y, Ao W, Yuan X, Zhou C. The Relationship Between the Expression of circFAT1 and Immune Cell in Patients with Non-Small Cell Lung Cancer. Int J Gen Med 2023; 16:4943-4951. [PMID: 37928955 PMCID: PMC10625319 DOI: 10.2147/ijgm.s434065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To analyze the correlation between the expression of circFAT1 in serum and immune cells in patients with non-small cell lung cancer (NSCLC). Methods A total of 96 patients with NSCLC admitted to our hospital from November 2019 to November 2022 were regarded as the study subjects. In the meantime, 96 volunteers who had physical examination in our hospital were regarded as the control group. The expression level of circFAT1 in serum was detected by real-time fluorescence quantitative PCR. NSCLC cancer tissue (NSCLC group) and paracancerous tissue (tissue ≥ 2cm away from the focus) (paracancerous group) were collected during the operation, the expression of CD4+, CD8+ and Foxp3+ in tissues was determined by immunohistochemistry; the expression level of circFAT1 mRNA in NSCLC tissue was analyzed using the Ualcan database. Spearman correlation was applied to analyze the correlation between the expression of circFAT1 and immune cells (CD4+, Foxp3+, CD8+). Results The level of circFAT1 in NSCLC tissue was higher than that in normal tissue (P < 0.05). Compared with the control group, the expression level of circFAT1 in serum of NSCLC group was obviously higher (P < 0.05). The expression level of circFAT1 was related to lymph node metastasis, TNM stage and differentiation (P < 0.05). Compared with the paracancerous group, the positive expression rate of CD8+ in NSCLC group was obviously lower, and the positive expression rates of CD4+ and Foxp3+ were obviously higher (P < 0.05). The expression of CD4+, Foxp3+ and CD8+ in NSCLC patients' cancer tissue was related to lymph node metastasis, TNM stage and differentiation degree (P < 0.05). Spearman correlation analysis showed that circFAT1 was positively correlated with the expression of CD4+ and Foxp3+ and negatively correlated with the expression of CD8+ (P < 0.05). Conclusion CircFAT1 is highly expressed in the serum of NSCLC patients and is closely related to immune cells.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Oncology, Yueyang People’s Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| | - Yabing Liu
- Department of Oncology, Yueyang People’s Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| | - Wenxuan Zeng
- Department of Cardiovascular, Yueyang Central Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| | - Yanrun Wu
- Department of Ultrasonic, Yueyang Central Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| | - Wei Ao
- Department of Cardiovascular, Yueyang People’s Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| | - Xiwei Yuan
- Department of Oncology, Yueyang People’s Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| | - Chuanyi Zhou
- Department of Oncology, Yueyang People’s Hospital, Yueyang City, Hunan Province, 414000, People’s Republic of China
| |
Collapse
|
13
|
Smieja J. Mathematical Modeling Support for Lung Cancer Therapy-A Short Review. Int J Mol Sci 2023; 24:14516. [PMID: 37833963 PMCID: PMC10572824 DOI: 10.3390/ijms241914516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
The paper presents a review of models that can be used to describe dynamics of lung cancer growth and its response to treatment at both cell population and intracellular processes levels. To address the latter, models of signaling pathways associated with cellular responses to treatment are overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies are discussed. Following that, models of intracellular processes that are crucial in responses to therapies are presented. The paper is concluded with a discussion of the applicability of the presented approaches in the context of lung cancer.
Collapse
Affiliation(s)
- Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Ryoo GH, Kim GJ, Han AR, Jin CH, Lee H, Nam JW, Choi H, Jung CH. Antimetastatic activity of seongsanamide B in γ-irradiated human lung cancer. Heliyon 2023; 9:e20179. [PMID: 37809399 PMCID: PMC10559954 DOI: 10.1016/j.heliyon.2023.e20179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer, which has a high incidence and mortality rates, often metastasizes and exhibits resistance to radiation therapy. Seongsanamide B has conformational features that suggest it has therapeutic potential; however, its antitumor activity has not yet been reported. We evaluated the possibility of seongsanamide B as a radiation therapy efficiency enhancer to suppress γ-irradiation-induced metastasis in non-small cell lung cancer. Seongsanamide B suppressed non-small cell lung cancer cell migration and invasion caused by γ-irradiation. Furthermore, it suppressed γ-irradiation-induced upregulation of Bcl-XL and its downstream signaling molecules, such as superoxide dismutase 2 (SOD2) and phosphorylated Src, by blocking the nuclear translocation of phosphorylated STAT3. Additionally, seongsanamide B markedly modulated the γ-irradiation-induced upregulation of E-cadherin and vimentin. Consistent with the results obtained in vitro, while seongsanamide B did not affect xenograft tumor growth, it significantly suppressed γ-irradiation-induced metastasis by inhibiting Bcl-XL/SOD2/phosphorylated-Src expression and modulating E-cadherin and vimentin expression in a mouse model. Thus, seongsanamide B may demonstrate potential applicability as a radiation therapy efficiency enhancer for lung cancer treatment.
Collapse
Affiliation(s)
- Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Geum Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, 56212, South Korea
| | - Hunmin Lee
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, 54810, South Korea
| |
Collapse
|
15
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
16
|
Ma X, Xu W, Jin X, Mu H, Wang Z, Hua Y, Cai Z, Zhang T. Telocinobufagin inhibits osteosarcoma growth and metastasis by inhibiting the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2023; 942:175529. [PMID: 36690054 DOI: 10.1016/j.ejphar.2023.175529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy in children and adolescents; it exhibits rapid growth and a high metastatic potential and may thus lead to relatively high mortality. The JAK2/STAT3 signaling pathway, which plays a critical role in the occurrence and development of osteosarcoma, is a potential target for the treatment of osteosarcoma. Here, we identified the natural product telocinobufagin (TCB), which is a component isolated from toad cake, as a potent candidate with anti-osteosarcoma effects. TCB inhibited osteosarcoma cell growth, migration, invasion and induced cancer cell apoptosis. Mechanistically, TCB specifically inhibited the JAK2/STAT3 signaling pathway. More importantly, TCB significantly suppressed tumor growth and metastasis in an osteosarcoma xenograft animal model. Moreover, TCB also showed strong inhibitory effects in other cancer types, such as lung cancer, liver cancer, colon cancer, breast cancer and gastric cancer. Hence, our study reveals TCB as a potent anti-osteosarcoma therapeutic agent that inhibits the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
17
|
Wang CY, Qin F, Wang CG, Kim D, Li JJ, Chen XL, Wang HS, Lee SK. Novel lignans from Zanthoxylum nitidum and antiproliferation activity of sesaminone in osimertinib-resistant non-small cell lung cancer cells. Bioorg Chem 2023; 134:106445. [PMID: 36893545 DOI: 10.1016/j.bioorg.2023.106445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Seven previously undescribed tetrahydrofuran lignans with different configurations and unusual isopentenyl substitutions, nitidumlignans D-J (corresponding to compounds 1, 2, 4, 6, 7, 9 and 10), along with 14 known lignans, were isolated from Zanthoxylum nitidum. Notably, compound 4 is an uncommon naturally occurring furan-core lignan derived from tetrahydrofuran aromatization. The antiproliferation activity of the isolated compounds (1-21) was determined in various human cancer cell lines. The structure-activity study revealed that the steric positioning and chirality of the lignans exert important effects on their activity and selectivity. In particular, compound 3 (sesaminone) exhibited potent antiproliferative activity in cancer cells, including acquired osimertinib-resistant non-small-cell lung cancer (HCC827-osi) cells. Compound 3 also inhibited colony formation and induced the apoptotic death of HCC827-osi cells. The underlying molecular mechanisms revealed that 3 downregulated the activation of the c-Met/JAK1/STAT3 and PI3K/AKT/mTOR signaling pathways in the HCC827-osi cells. In addition, the combination of 3 and osimertinib exhibited synergistic effects on the antiproliferative activity against HCC827-osi cells. Overall, these findings inform the structure elucidation of novel lignans isolated from Z. nitidum, and sesaminone was identified as a potential compound for exerting antiproliferative effects on osimertinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Gu Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xian-Lan Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Sun Y, Yu D, Geng X, Ding D, Yang Y, Liu Z, Xiao Z, Wang R, Tan W. Artificial Base-Directed In Vivo Assembly of an Albumin-siRNA Complex for Tumor-Targeting Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8872-8883. [PMID: 36751121 DOI: 10.1021/acsami.2c19075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA interference (RNAi) mediated by short interfering RNA (siRNA) is a promising method for cancer treatment, but the clinical application is hampered by several limitations, including metabolic instability, lack of tumor specificity, and poor cellular uptake. To meet these challenges, we have explored the possibility of structure modification of siRNA with artificial bases for property optimization. A series of siRNAs functionalized with different numbers of hydrophobic base F are prepared for screening. The interactions of plasma proteins with F-base-modified siRNA (F-siRNA) are investigated, and it is identified that the interaction with serum albumin is dominant. Experiments revealed that the introduction of F bases conferred modified siRNA with improved tumor-specific accumulation, prolonged circulatory retention time, and better tissue permeability. Mechanistic studies indicated that the F base induces the formulation of a stable siRNA-albumin complex, which transports siRNA to tumor tissues selectively owing to an enhanced permeability and retention (EPR) effect of albumin. The F base also facilitates the binding of siRNA to transport-associated proteins on the cell membrane, enabling its cellular internalization. Together, these data demonstrate that F base modification confers siRNA-enhanced cellular uptake and biostability and specific accumulation in tumor tissue, which provides a new approach for the development of siRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Yang Sun
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Die Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyao Geng
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Zeyu Xiao
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
19
|
Wu Y, Kang K, Han C, Wang L, Wang Z, Zhao A. Single-Cell Profiling Comparisons of Tumor Microenvironment between Primary Advanced Lung Adenocarcinomas and Brain Metastases and Machine Learning Algorithms in Predicting Immunotherapeutic Responses. Biomolecules 2023; 13:185. [PMID: 36671569 PMCID: PMC9855438 DOI: 10.3390/biom13010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Brain metastasis (BM) occurs commonly in patients with lung adenocarcinomas. Limited evidence indicates safety and efficacy of immunotherapy for this metastatic tumor, though immune checkpoint blockade has become the front-line treatment for primary advanced non-small cell lung cancer. We aim to comprehensively compare tumor microenvironments (TME) between primary tumors (PT) and BM at single-cell resolution. Single-cell RNA transcriptomics from tumor samples of PT (N = 23) and BM (N = 16) and bulk sequencing data were analyzed to explore potential differences in immunotherapeutic efficacy between PT and BM of lung adenocarcinomas. Multiple machine learning algorithms were used to develop and validate models that predict responses to immunotherapy using the external cohorts. We found obviously less infiltration of immune cells in BM than PT, characterized specifically by deletion of anti-cancer CD8+ Trm cells and more dysfunctional CD8+ Tem cells in BM tumors. Meanwhile, macrophages and dendritic cells within BM demonstrated more pro-tumoral and anti-inflammatory effects, represented by distinct distribution and function of SPP1+ and C1Qs+ tumor-associated microphages, and inhibited antigen presentation capacity and HLA-I gene expression, respectively. Besides, we also found the lack of inflammatory-like CAFs and enrichment of pericytes within BM tumors, which may be critical factors in shaping inhibitory TME. Cell communication analysis further revealed mechanisms of the immunosuppressive effects associated with the activation of some unfavorable pathways, such as TGFβ signaling, highlighting the important roles of stromal cells in the anti-inflammatory microenvironment, especially specific pericytes. Furthermore, pericyte-related genes were identified to optimally predict immunotherapeutic responses by machine learning models with great predictive performance. Overall, various factors contribute to the immunosuppressive TME within BM tumors, represented by the lack of critical anti-cancer immune cells. Meanwhile, pericytes may help shape the TME and targeting the associated mechanisms may enhance immunotherapy efficacy for BM tumors in patients with lung adenocarcinomas.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Thoracic Oncology, Cancer Center, and Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Kang
- Department of Thoracic Oncology, Cancer Center, and Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Han
- Department of Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhile Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Combining STAT3-Targeting Agents with Immune Checkpoint Inhibitors in NSCLC. Cancers (Basel) 2023; 15:cancers15020386. [PMID: 36672335 PMCID: PMC9857288 DOI: 10.3390/cancers15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite recent therapeutic advances, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor (TF) with multiple tumor-promoting effects in NSCLC, including proliferation, anti-apoptosis, angiogenesis, invasion, metastasis, immunosuppression, and drug resistance. Recent studies suggest that STAT3 activation contributes to resistance to immune checkpoint inhibitors. Thus, STAT3 represents an attractive target whose pharmacological modulation in NSCLC may assist in enhancing the efficacy of or overcoming resistance to immune checkpoint inhibitors. In this review, we discuss the biological mechanisms through which STAT3 inhibition synergizes with or overcomes resistance to immune checkpoint inhibitors and highlight the therapeutic strategy of using drugs that target STAT3 as potential combination partners for immune checkpoint inhibitors in the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-210-746-2508
| |
Collapse
|
21
|
Li S, Chen Z, Zhang W, Wang T, Wang X, Wang C, Chao J, Liu L. Elevated expression of the membrane-anchored serine protease TMPRSS11E in NSCLC progression. Carcinogenesis 2022; 43:1092-1102. [PMID: 35951670 DOI: 10.1093/carcin/bgac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023] Open
Abstract
TMPRSS11E was found to be upregulated in human nonsmall cell lung cancer samples (NSCLC) and cell lines, and high expression was associated with poor survival of NSCLC patients. The results of in vitro and in vivo experiments showed that overexpressing TMPRSS11E resulted in A549 cell proliferation and migration promotion, while the TMPRSS11E S372A mutant with the mutated catalytic domain lost the promoting function. In addition, in mouse xenograft models, silencing TMPRSS11E expression inhibited the growth of 95D cell-derived tumors. To explore the mechanism of marked upregulation of TMPRSS11E in NSCLC cells, promoter analysis, EMSA, and ChIP assays were performed. STAT3 was identified as the transcription factor responsible for TMPRSS11E transcription. Moreover, the purified recombinant TMPRSS11E catalytic domain exhibited enzymatic activity for the proteolytic cleavage of PAR2. Recombinant TMPRSS11E catalytic domain incubation further activated the PAR2-EGFR-STAT3 pathway. These findings established a mechanism of TMPRSS11E-PAR2-EGFR-STAT3 positive feedback, and the oncogenic role of TMPRSS11E as a PAR2 modulator in NSCLC was revealed.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Zhenfa Chen
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Wei Zhang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Ting Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Xihua Wang
- Department of Respiration, Zhongda Hospital, Nanjing 210009, China
| | - Chao Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, Medical School of Southeast University, Nanjing 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medicine School of Southeast University, Nanjing 210009, China
| |
Collapse
|
22
|
Nanoparticle-Mediated Delivery of STAT3 Inhibitors in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122787. [PMID: 36559280 PMCID: PMC9781630 DOI: 10.3390/pharmaceutics14122787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is a common malignancy worldwide, with high morbidity and mortality. Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor that not only regulates different hallmarks of cancer, such as tumorigenesis, cell proliferation, and metastasis but also regulates the occurrence and maintenance of cancer stem cells (CSCs). Abnormal STAT3 activity has been found in a variety of cancers, including lung cancer, and its phosphorylation level is associated with a poor prognosis of lung cancer. Therefore, the STAT3 pathway may represent a promising therapeutic target for the treatment of lung cancer. To date, various types of STAT3 inhibitors, including natural compounds, small molecules, and gene-based therapies, have been developed through direct and indirect strategies, although most of them are still in the preclinical or early clinical stages. One of the main obstacles to the development of STAT3 inhibitors is the lack of an effective targeted delivery system to improve their bioavailability and tumor targetability, failing to fully demonstrate their anti-tumor effects. In this review, we will summarize the recent advances in STAT3 targeting strategies, as well as the applications of nanoparticle-mediated targeted delivery of STAT3 inhibitors in the treatment of lung cancer.
Collapse
|
23
|
Qi YS, Xiao MY, Xie P, Xie JB, Guo M, Li FF, Piao XL. Comprehensive serum metabolomics and network analysis to reveal the mechanism of gypenosides in treating lung cancer and enhancing the pharmacological effects of cisplatin. Front Pharmacol 2022; 13:1070948. [PMID: 36532716 PMCID: PMC9751056 DOI: 10.3389/fphar.2022.1070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 10/23/2023] Open
Abstract
Gypenosides (GYP) exerted anticancer activity against various cancers. However, the mechanism of GYP against lung cancer (LC) in vivo remains unclear. This study aims to reveal the potential mechanism of GYP against LC and enhancing cisplatin efficacy using a comprehensive analysis of metabolomics, network analysis. Pharmacodynamic results showed that GYP inhibited tumor growth, reduced tumor volume and tumor weight, and alleviated pathological symptoms in Lewis tumor-bearing mice, and GYP could enhance the anti-LC effects of cisplatin. Using serum metabolomics methods, 53 metabolites were found to be significantly altered in the model group, and the levels of 23 biomarkers were significantly restored after GYP treatment. GYP-related metabolic pathways involved six pathways, including alpha-linolenic acid metabolism, glutathione metabolism, sphingolipid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and primary bile acid biosynthesis. 57 genes associated with differential metabolites of GYP recovery and 7 genes of 11 saponins of GYP against LC were screened by network analysis, the STRING database was used to find the association between 57 genes and 7 genes, and a compound-intersection gene-metabolite related gene-metabolite-pathway network was constructed, and STAT3, MAPK14, EGFR and TYMS might be the crucial targets of GYP against LC. Western blot results showed that GYP restored the levels of STA3, MAPK14, EGFR, and TYMS in the model group, and GYP also restored the levels of STAT3 and MAPK14 in the cisplatin group, indicating that GYP might exert anti-LC effects and enhance the pharmacological effects of cisplatin through MAPK14/STAT3 signaling pathway. Our method revealed the effect and mechanism of GYP on LC and the pharmacological effects of GYP-enhanced chemotherapeutic agent cisplatin, which provided some reference for the development of anti-cancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
24
|
Dorai S, Alex Anand D. Differentially Expressed Cell Cycle Genes and STAT1/3-Driven Multiple Cancer Entanglement in Psoriasis, Coupled with Other Comorbidities. Cells 2022; 11:cells11233867. [PMID: 36497125 PMCID: PMC9740537 DOI: 10.3390/cells11233867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Psoriasis is a persistent T-cell-supported inflammatory cutaneous disorder, which is defined by a significant expansion of basal cells in the epidermis. Cell cycle and STAT genes that control cell cycle progression and viral infection have been revealed to be comorbid with the development of certain cancers and other disorders, due to their abnormal or scanty expression. The purpose of this study is to evaluate the expression of certain cell cycle and STAT1/3 genes in psoriasis patients and to determine the types of comorbidities associated with these genes. To do so, we opted to adopt the in silico methodology, since it is a quick and easy way to discover any potential comorbidity risks that may exist in psoriasis patients. With the genes collected from early research groups, protein networks were created in this work using the NetworkAnalyst program. The crucial hub genes were identified by setting the degree parameter, and they were then used in gene ontology and pathway assessments. The transcription factors that control the hub genes were detected by exploring TRRUST, and DGIdb was probed for remedies that target transcription factors and hubs. Using the degree filter, the first protein subnetwork produced seven hub genes, including STAT3, CCNB1, STAT1, CCND1, CDC20, HSPA4, and MAD2L1. The hub genes were shown to be implicated in cell cycle pathways by the gene ontology and Reactome annotations. The former four hubs were found in signaling pathways, including prolactin, FoxO, JAK/STAT, and p53, according to the KEGG annotation. Furthermore, they enhanced several malignancies, including pancreatic cancer, Kaposi's sarcoma, non-small cell lung cancer, and acute myeloid leukemia. Viral infections, including measles, hepatitis C, Epstein-Barr virus, and HTLV-1 and viral carcinogenesis were among the other susceptible diseases. Diabetes and inflammatory bowel disease were conjointly annotated. In total, 129 medicines were discovered in DGIdb to be effective against the transcription factors BRCA1, RELA, TP53, and MYC, as opposed to 10 medications against the hubs, STAT3 and CCND1, in tandem with 8 common medicines. The study suggests that the annotated medications should be tested in suitable psoriatic cell lines and animal models to optimize the drugs used based on the kind, severity, and related comorbidities of psoriasis. Furthermore, a personalized medicine protocol must be designed for each psoriasis patient that displays different comorbidities.
Collapse
|
25
|
Ruzzi F, Angelicola S, Landuzzi L, Nironi E, Semprini MS, Scalambra L, Altimari A, Gruppioni E, Fiorentino M, Giunchi F, Ferracin M, Astolfi A, Indio V, Ardizzoni A, Gelsomino F, Nanni P, Lollini PL, Palladini A. ADK-VR2, a cell line derived from a treatment-naïve patient with SDC4-ROS1 fusion-positive primarily crizotinib-resistant NSCLC: a novel preclinical model for new drug development of ROS1-rearranged NSCLC. Transl Lung Cancer Res 2022; 11:2216-2229. [PMID: 36519016 PMCID: PMC9742620 DOI: 10.21037/tlcr-22-163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND ROS1 fusions are driver molecular alterations in 1-2% of non-small cell lung cancers (NSCLCs). Several tyrosine kinase inhibitors (TKIs) have shown high efficacy in patients whose tumors harbour a ROS1 fusion. However, the limited availability of preclinical models of ROS1-positive NSCLC hinders the discovery of new drugs and the understanding of the mechanisms underlying drug resistance and strategies to overcome it. METHODS The ADK-VR2 cell line was derived from the pleural effusion of a treatment-naïve NSCLC patient bearing SDC4-ROS1 gene fusion. The sensitivity of ADK-VR2 and its crizotinib-resistant clone ADK-VR2 AG143 (selected in 3D culture in the presence of crizotinib) to different TKIs was tested in vitro, in both 2D and 3D conditions. Tumorigenic and metastatic ability was assessed in highly immunodeficient mice. In addition, crizotinib efficacy on ADK-VR2 was evaluated in vivo. RESULTS 2D-growth of ADK-VR2 cells was partially inhibited by crizotinib. On the contrary, the treatment with other TKIs, such as lorlatinib, entrectinib and DS-6051b, did not result in cell growth inhibition. TKIs showed dramatically different efficacy on ADK-VR2 cells, depending on the cell culture conditions. In 3D culture, ADK-VR2 growth was indeed almost totally inhibited by lorlatinib and DS-6051b. The clone ADK-VR2 AG143 showed higher resistance to crizotinib treatment in vitro, compared to its parental cell line, in both 2D and 3D cultures. Similarly to ADK-VR2, ADK-VR2 AG143 growth was strongly inhibited by lorlatinib in 3D conditions. Nevertheless, ADK-VR2 AG143 sphere formation was less affected by TKIs treatment, compared to the parental cell line. In vivo experiments highlighted the high tumorigenic and metastatic ability of ADK-VR2 cell line, which, once injected in immunodeficient mice, gave rise to both spontaneous and experimental lung metastases while the crizotinib-resistant clone ADK-VR2 AG143 showed a slower growth in vivo. In addition, ADK-VR2 tumor growth was significantly reduced but not eradicated by crizotinib treatment. CONCLUSIONS The ADK-VR2 cell line is a promising NSCLC preclinical model for the study of novel targeted therapies against ROS1 fusions and the mechanisms of resistance to TKI therapies.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Nironi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Altimari
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Divisione di Anatomia Patologica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Divisione di Oncologia Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Alma Mater Institute on Healthy Planet, University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Hashimoto S, Hashimoto A, Muromoto R, Kitai Y, Oritani K, Matsuda T. Central Roles of STAT3-Mediated Signals in Onset and Development of Cancers: Tumorigenesis and Immunosurveillance. Cells 2022; 11:cells11162618. [PMID: 36010693 PMCID: PMC9406645 DOI: 10.3390/cells11162618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023] Open
Abstract
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Collapse
Affiliation(s)
- Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Correspondence: (S.H.); (T.M.)
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: (S.H.); (T.M.)
| |
Collapse
|
27
|
Guo Q, Liu L, Chen Z, Fan Y, Zhou Y, Yuan Z, Zhang W. Current treatments for non-small cell lung cancer. Front Oncol 2022; 12:945102. [PMID: 36033435 PMCID: PMC9403713 DOI: 10.3389/fonc.2022.945102] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite improved methods of diagnosis and the development of different treatments, mortality from lung cancer remains surprisingly high. Non-small cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases. Therefore, it is important to review current methods of diagnosis and treatments of NSCLC in the clinic and preclinic. In this review, we describe, as a guide for clinicians, current diagnostic methods and therapies (such as chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy) for NSCLC.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zelong Chen
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yannan Fan
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, ; Ziqiao Yuan,
| |
Collapse
|
28
|
Insights into the Mechanisms of Action of Proanthocyanidins and Anthocyanins in the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23147905. [PMID: 35887251 PMCID: PMC9316101 DOI: 10.3390/ijms23147905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
In traditional medicine, different parts of plants, including fruits, have been used for their anti-inflammatory and anti-oxidative properties. Plant-based foods, such as fruits, seeds and vegetables, are used for therapeutic purposes due to the presence of flavonoid compounds. Proanthocyanidins (PCs) and anthocyanins (ACNs) are the major distributed flavonoid pigments in plants, which have therapeutic potential against certain chronic diseases. PCs and ACNs derived from plant-based foods and/or medicinal plants at different nontoxic concentrations have shown anti-non-small cell lung cancer (NSCLC) activity in vitro/in vivo models through inhibiting proliferation, invasion/migration, metastasis and angiogenesis and by activating apoptosis/autophagy-related mechanisms. However, the potential mechanisms by which these compounds exert efficacy against nicotine-induced NSCLC are not fully understood. Thus, this review aims to gain insights into the mechanisms of action and therapeutic potential of PCs and ACNs in nicotine-induced NSCLC.
Collapse
|
29
|
Lu CC, Tsai HC, Yang DY, Wang SW, Tsai MH, Hua CH, Chen KJ, Chen MYC, Lien MY, Tang CH. The Chemokine CCL4 Stimulates Angiopoietin-2 Expression and Angiogenesis via the MEK/ERK/STAT3 Pathway in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10071612. [PMID: 35884919 PMCID: PMC9313364 DOI: 10.3390/biomedicines10071612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor with a poor prognosis and is a major public health burden in Taiwan. Angiogenesis, the formation of new blood vessels, promotes tumor proliferation, maintenance, and metastasis. Angiopoietin 2 (Angpt2), a mitogen with a strong angiogenic effect, is highly specific to endothelial cells and a key player in angiogenesis. The inflammatory chemokine (C-C motif) ligand 4 (CCL4) is also important in the pathogenesis and progression of cancer. In this study, an analysis of records from The Cancer Genome Atlas (TCGA) database found higher CCL4 expression in oral cancer tissue than in normal healthy tissue. CCL4 treatment of oral cancer cells upregulated Angpt2 expression and stimulated mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK), and signal transducer and activator of transcription 3 (STAT3) phosphorylation. Transfection of oral cancer cells with MEK, ERK, and STAT3 inhibitors and their small interfering RNAs inhibited CCL4-induced promotion of Angpt2 expression and angiogenesis. In a mouse model of OSCC, CCL4-treated cells promoted neovascularization in implanted Matrigel plugs, whereas inhibiting CCL4 expression suppressed Angpt2 expression and angiogenesis. CCL4 shows promise as a new molecular therapeutic target for inhibiting angiogenesis and metastasis in OSCC.
Collapse
Affiliation(s)
- Chien-Chi Lu
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-C.L.); (M.-H.T.); (C.-H.H.)
| | - Hsiao-Chi Tsai
- School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Dong-Ying Yang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404328, Taiwan;
| | - Shih-Wei Wang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 252005, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-C.L.); (M.-H.T.); (C.-H.H.)
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-C.L.); (M.-H.T.); (C.-H.H.)
| | - Kwei-Jing Chen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan; (K.-J.C.); (M.Y.-C.C.)
- Department of Dentistry, China Medical University Hospital, Taichung 404327, Taiwan
| | - Michael Yuan-Chien Chen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan; (K.-J.C.); (M.Y.-C.C.)
- Department of Dentistry, China Medical University Hospital, Taichung 404327, Taiwan
| | - Ming-Yu Lien
- School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
- Correspondence: (M.-Y.L.); (C.-H.T.); Tel.: +886-2205-2121 (ext. 1513) (M.-Y.L.); +886-2205-2121 (ext. 7726) (C.-H.T.)
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 404328, Taiwan;
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404328, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence: (M.-Y.L.); (C.-H.T.); Tel.: +886-2205-2121 (ext. 1513) (M.-Y.L.); +886-2205-2121 (ext. 7726) (C.-H.T.)
| |
Collapse
|
30
|
Ruan X, Ye Y, Cheng W, Xu L, Huang M, Chen Y, Zhu J, Lu X, Yan F. Multi-Omics Integrative Analysis of Lung Adenocarcinoma: An in silico Profiling for Precise Medicine. Front Med (Lausanne) 2022; 9:894338. [PMID: 35721082 PMCID: PMC9204058 DOI: 10.3389/fmed.2022.894338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common histological subtypes of lung cancer. The aim of this study was to construct consensus clusters based on multi-omics data and multiple algorithms. In order to identify specific molecular characteristics and facilitate the use of precision medicine on patients we used gene expression, DNA methylation, gene mutations, copy number variation data, and clinical data of LUAD patients for clustering. Consensus clusters were obtained using a consensus ensemble of five multi-omics integrative algorithms. Four molecular subtypes were identified. The CS1 and CS2 subtypes had better prognosis. Based on the immune and drug sensitivity predictions, we inferred that CS1 may be less responsive to immunotherapy and less sensitive to chemotherapeutic drugs. The high immune infiltration of CS2 cells may respond well to immunotherapy. Additionally, the CS2 subtype may also respond to EGFR molecular targeted therapy. The CS3 and CS4 subtypes were associated with poor prognosis. These two subtypes had more mutations, especially TP53 ones, as well as higher sensitivity to chemotherapeutics for lung cancer. However, CS3 was enriched in immune-related pathways and may respond to anti-PD1 immunotherapy. In addition, CS1 and CS4 were less sensitive to ferroptosis inhibitors. We performed a comprehensive analysis of the five types of omics data using five clustering algorithms to reveal the molecular characteristics of LUAD patients. These findings provide new insights into LUAD subtypes and potential clinical treatment strategies to guide personalized management and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
32
|
Clowers MJ, Moghaddam SJ. Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071785. [PMID: 35406557 PMCID: PMC8997152 DOI: 10.3390/cancers14071785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lung adenocarcinomas with mutations in the K-ras gene are hard to target pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may be able to target STAT3. Abstract Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However, our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient. Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as a new target for personalized preventive and therapeutic intervention for this intractable form of lung cancer.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|