1
|
Wang X, Wang X, Wang D, Zhou C, Lv K, Ma Y, Chang W, Wang B, Hu J, Ji Y, Dai Z, Ma Y. Interleukin-10 overexpression in 4T1 cells: A gateway to suppressing mammary carcinoma growth. Int Immunopharmacol 2024; 142:113089. [PMID: 39244897 DOI: 10.1016/j.intimp.2024.113089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Interleukin-10 (IL-10) exerts complex effects on tumor growth, exhibiting both pro- and anti-tumor properties. Recent focus on the anti-inflammatory properties of IL-10 has highlighted its potential anti-tumor properties, particularly through the enhancement of CD8+ T cell activity. However, further research is needed to fully elucidate its other anti-tumor mechanisms. Our study investigates novel anti-tumor mechanisms of IL-10 in a murine mammary carcinoma model (4T1). We found that IL-10 overexpression in mouse 4T1 cells suppressed tumor growth in vivo. This suppression was accompanied by an increase in IFN-γ-secreting CD8+ T cells and a decrease in myeloid-derived suppressor cells (MDSCs) in tumor tissue. In vitro experiments showed that IL-10-rich tumor cell-derived supernatants inhibited myeloid cell differentiation into monocytic and granulocytic MDSCs while reducing MDSCs migration. In addition, IL-10 overexpression downregulated CXCL5 expression in 4T1 cells, resulting in decreased CXCR2+ MDSCs infiltration. Using RAG1-deficient mice and CXCL5 knockdown tumor models, we demonstrated that the anti-tumor effects of IL-10 depend on both CD8+ T cells and reduced MDSC infiltration. IL-10 attenuated the immunosuppressive tumor microenvironment by enhancing CD8+ T cell activity and inhibiting MDSCs infiltration. In human breast cancer, we observed a positive correlation between CXCL5 expression and MDSC infiltration. Our findings reveal a dual mechanism of IL-10-mediated tumor suppression: (1) direct enhancement of CD8+ T cell activity and (2) indirect reduction of immunosuppressive MDSCs through CXCL5 downregulation and inhibition of myeloid cell differentiation. This study provides new insights into the role of IL-10 in anti-tumor immunity and suggests potential strategies for breast cancer immunotherapy by modulating the IL-10-CXCL5-MDSCs axis.
Collapse
Affiliation(s)
- Xiaoqin Wang
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoqian Wang
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Dan Wang
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Can Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaige Lv
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanfen Ma
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenjing Chang
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baofeng Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Hu
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
2
|
Kwak JW, Nguyen HQ, Camai A, Huffman GM, Mekvanich S, Kenney NN, Zhu X, Randolph TW, Houghton AM. CXCR1/2 antagonism inhibits neutrophil function and not recruitment in cancer. Oncoimmunology 2024; 13:2384674. [PMID: 39076249 PMCID: PMC11285219 DOI: 10.1080/2162402x.2024.2384674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The level of tumor and circulating CXCR1/2-expressing neutrophils and CXCR1/2 ligands correlate with poor patient outcomes, inversely correlate with tumoral lymphocyte content, and predict immune checkpoint inhibitor (ICI) treatment failure. Accordingly, CXCR2-selective and CXCR1/2 dual inhibitors exhibit activity both as single agents and in combination with ICI treatment in mouse tumor models. Based on such reports, clinical trials combining CXCR1/2 axis antagonists with ICI treatment for cancer patients are underway. It has been assumed that CXCR1/2 blockade impacts tumors by blocking neutrophil chemotaxis and reducing neutrophil content in tumors. Here, we show that while CXCR2 antagonism does slow tumor growth, it does not preclude neutrophil recruitment into tumor. Instead, CXCR1/2 inhibition alters neutrophil function by blocking the polarization of transcriptional programs toward immune suppressive phenotypes and rendering neutrophils incapable of suppressing lymphocyte proliferation. This is associated with decreased release of reactive oxygen species and Arginase-1 into the extracellular milieu. Remarkably, these therapeutics do not impact the ability of neutrophils to phagocytose and kill ingested bacteria. Taken together, these results mechanistically explain why CXCR1/2 inhibition has been active in cancer but without infectious complications.
Collapse
Affiliation(s)
- Jeff W. Kwak
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Helena Q. Nguyen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Alex Camai
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Grace M. Huffman
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Surapat Mekvanich
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Naia N. Kenney
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Xiaodong Zhu
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
| | | | - A. McGarry Houghton
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Thomas R, Jerome JM, Krieger KL, Ashraf N, Rowley DR. The reactive stroma response regulates the immune landscape in prostate cancer. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:249-77. [DOI: 10.20517/jtgg.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prostate cancer remains the most commonly diagnosed and the second leading cause of cancer-related deaths in men in the United States. The neoplastic transformation of prostate epithelia, concomitant with modulations in the stromal compartment, known as reactive stromal response, is critical for the growth, development, and progression of prostate cancer. Reactive stroma typifies an emergent response to disrupted tissue homeostasis commonly observed in wound repair and pathological conditions such as cancer. Despite the significance of reactive stroma in prostate cancer pathobiology, our understanding of the ontogeny, phenotypic and functional heterogeneity, and reactive stromal regulation of the immune microenvironment in prostate cancer remains limited. Traditionally characterized to have an immunologically "cold" tumor microenvironment, prostate cancer presents significant challenges for advancing immunotherapy compared to other solid tumors. This review explores the detrimental role of reactive stroma in prostate cancer, particularly its immunomodulatory function. Understanding the molecular characteristics and dynamic transcriptional program of the reactive stromal populations in tandem with tumor progression could offer insights into enhancing immunotherapy efficacy against prostate cancer.
Collapse
|
4
|
Eichhorn JS, Petrik J. Thetumor microenvironment'sinpancreatic cancer:Effects onimmunotherapy successandnovel strategiestoovercomethehostile environment. Pathol Res Pract 2024; 259:155370. [PMID: 38815507 DOI: 10.1016/j.prp.2024.155370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Cancer is a significant global health issue that poses a considerable burden on both patients and healthcare systems. Many different types of cancers exist that often require unique treatment approaches and therapies. A hallmark of tumor progression is the creation of an immunosuppressive environment, which poses complex challenges for current treatments. Amongst the most explored characteristics is a hypoxic environment, high interstitial pressure, and immunosuppressive cells and cytokines. Traditional cancer treatments involve radiotherapy, chemotherapy, and surgical procedures. The advent of immunotherapies was regarded as a promising approach with hopes of greatly increasing patients' survival and outcome. Although some success is seen with various immunotherapies, the vast majority of monotherapies are unsuccessful. This review examines how various aspects of the tumor microenvironment (TME) present challenges that impede the success of immunotherapies. Subsequently, we review strategies to manipulate the TME to facilitate the success of immunotherapies.
Collapse
Affiliation(s)
- Jan Sören Eichhorn
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1 Canada.
| |
Collapse
|
5
|
Zhang X, Liang Q, Cao Y, Yang T, An M, Liu Z, Yang J, Liu Y. Dual depletion of myeloid-derived suppressor cells and tumor cells with self-assembled gemcitabine-celecoxib nano-twin drug for cancer chemoimmunotherapy. J Nanobiotechnology 2024; 22:319. [PMID: 38849938 PMCID: PMC11161946 DOI: 10.1186/s12951-024-02598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have played a significant role in facilitating tumor immune escape and inducing an immunosuppressive tumor microenvironment. Eliminating MDSCs and tumor cells remains a major challenge in cancer immunotherapy. A novel approach has been developed using gemcitabine-celecoxib twin drug-based nano-assembled carrier-free nanoparticles (GEM-CXB NPs) for dual depletion of MDSCs and tumor cells in breast cancer chemoimmunotherapy. The GEM-CXB NPs exhibit prolonged blood circulation, leading to the preferential accumulation and co-release of GEM and CXB in tumors. This promotes synergistic chemotherapeutic activity by the proliferation inhibition and apoptosis induction against 4T1 tumor cells. In addition, it enhances tumor immunogenicity by immunogenic cell death induction and MDSC-induced immunosuppression alleviation through the depletion of MDSCs. These mechanisms synergistically activate the antitumor immune function of cytotoxic T cells and natural killer cells, inhibit the proliferation of regulatory T cells, and promote the M2 to M1 phenotype repolarization of tumor-associated macrophages, considerably enhancing the overall antitumor and anti-metastasis efficacy in BALB/c mice bearing 4T1 tumors. The simplified engineering of GEM-CXB NPs, with their dual depletion strategy targeting immunosuppressive cells and tumor cells, represents an advanced concept in cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Yongjin Cao
- Department of Pharmacy, School of Nursing, Wuxi Taihu University, Wuxi, 214064, China
| | - Ting Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zihan Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiayu Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Lo YL, Li CY, Chou TF, Yang CP, Wu LL, Chen CJ, Chang YH. Exploring in vivo combinatorial chemo-immunotherapy: Addressing p97 suppression and immune reinvigoration in pancreatic cancer with tumor microenvironment-responsive nanoformulation. Biomed Pharmacother 2024; 175:116660. [PMID: 38701563 DOI: 10.1016/j.biopha.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-β/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.
Collapse
Affiliation(s)
- Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Ching-Ping Yang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Ling Wu
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Xu C, Amna N, Shi Y, Sun R, Weng C, Chen J, Dai H, Wang C. Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs. Molecules 2024; 29:2436. [PMID: 38893313 PMCID: PMC11173511 DOI: 10.3390/molecules29112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are recognized as major immune suppressor cells in the tumor microenvironment that may inhibit immune checkpoint blockade (ICB) therapy. Here, we developed a Stattic-loaded mesoporous silica nanoparticle (PEG-MSN-Stattic) delivery system to tumor sites to reduce the number of MDSCs in tumors. This approach is able to significantly deplete intratumoral MSDCs and thereby increase the infiltration of T lymphocytes in tumors to enhance ICB therapy. Our approach may provide a drug delivery strategy for regulating the tumor microenvironment and enhancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Function Materials and Devices, Soochow University, Suzhou 215123, China; (C.X.); (N.A.); (Y.S.); (R.S.); (C.W.); (J.C.)
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Function Materials and Devices, Soochow University, Suzhou 215123, China; (C.X.); (N.A.); (Y.S.); (R.S.); (C.W.); (J.C.)
| |
Collapse
|
8
|
Muralidhar A, Gamat-Huber M, Vakkalanka S, McNeel DG. Sequence of androgen receptor-targeted vaccination with androgen deprivation therapy affects anti-prostate tumor efficacy. J Immunother Cancer 2024; 12:e008848. [PMID: 38772685 PMCID: PMC11110578 DOI: 10.1136/jitc-2024-008848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
RATIONALE Androgen deprivation therapy (ADT) is the primary treatment for recurrent and metastatic prostate cancer. In addition to direct antitumor effects, ADT has immunomodulatory effects such as promoting T-cell infiltration and enhancing antigen processing/presentation. Previous studies in our laboratory have demonstrated that ADT also leads to increased expression of the androgen receptor (AR) and increased recognition of prostate tumor cells by AR-specific CD8+T cells. We have also demonstrated that ADT combined with a DNA vaccine encoding the AR significantly slowed tumor growth and improved the survival of prostate tumor-bearing mice. The current study aimed to investigate the impact of the timing and sequencing of ADT with vaccination on the tumor immune microenvironment in murine prostate cancer models to further increase the antitumor efficacy of vaccines. METHODS Male FVB mice implanted with Myc-CaP tumor cells, or male C57BL/6 mice implanted with TRAMP-C1 prostate tumor cells, were treated with a DNA vaccine encoding AR (pTVG-AR) and ADT. The sequence of administration was evaluated for its effect on tumor growth, and tumor-infiltrating immune populations were characterized. RESULTS Vaccination prior to ADT (pTVG-AR → ADT) significantly enhanced antitumor responses and survival. This was associated with increased tumor infiltration by CD4+ and CD8+ T cells, including AR-specific CD8+T cells. Depletion of CD8+T cells prior to ADT significantly worsened overall survival. Following ADT treatment, however, Gr1+ myeloid-derived suppressor cells (MDSCs) increased, and this was associated with fewer infiltrating T cells and reduced tumor growth. Inhibiting Gr1+MDSCs recruitment, either by using a CXCR2 antagonist or by cycling androgen deprivation with testosterone replacement, improved antitumor responses and overall survival. CONCLUSION Vaccination prior to ADT significantly improved antitumor responses, mediated in part by increased infiltration of CD8+T cells following ADT. Targeting MDSC recruitment following ADT further enhanced antitumor responses. These findings suggest logical directions for future clinical trials to improve the efficacy of prostate cancer vaccines.
Collapse
Affiliation(s)
- Anusha Muralidhar
- Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melissa Gamat-Huber
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sita Vakkalanka
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Guan M, Liu S, Yang YG, Song Y, Zhang Y, Sun T. Chemokine systems in oncology: From microenvironment modulation to nanocarrier innovations. Int J Biol Macromol 2024; 268:131679. [PMID: 38641274 DOI: 10.1016/j.ijbiomac.2024.131679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Over the past few decades, significant strides have been made in understanding the pivotal roles that chemokine networks play in tumor biology. These networks, comprising chemokines and their receptors, wield substantial influence over cancer immune regulation and therapeutic outcomes. As a result, targeting these chemokine systems has emerged as a promising avenue for cancer immunotherapy. However, therapies targeting chemokines face significant challenges in solid tumor treatment, due to the complex and fragile of the chemokine networks. A nuanced comprehension of the complicacy and functions of chemokine networks, and their impact on the tumor microenvironment, is essential for optimizing their therapeutic utility in oncology. This review elucidates the ways in which chemokine networks interact with cancer immunity and tumorigenesis. We particularly elaborate on recent innovations in manipulating these networks for cancer treatment. The review also highlights future challenges and explores potential biomaterial strategies for clinical applications.
Collapse
Affiliation(s)
- Meng Guan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Yanqiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Muralidhar A, Hernandez R, Morris ZS, Comas Rojas H, Bio Idrissou M, Weichert JP, McNeel DG. Myeloid-derived suppressor cells attenuate the antitumor efficacy of radiopharmaceutical therapy using 90Y-NM600 in combination with androgen deprivation therapy in murine prostate tumors. J Immunother Cancer 2024; 12:e008760. [PMID: 38663936 PMCID: PMC11043705 DOI: 10.1136/jitc-2023-008760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
RATIONALE Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.
Collapse
Affiliation(s)
| | | | - Zachary S Morris
- Human Oncology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hansel Comas Rojas
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
12
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
13
|
Peyvandi S, Bulliard M, Yilmaz A, Kauzlaric A, Marcone R, Haerri L, Coquoz O, Huang YT, Duffey N, Gafner L, Lorusso G, Fournier N, Lan Q, Rüegg C. Tumor-educated Gr1+CD11b+ cells drive breast cancer metastasis via OSM/IL-6/JAK-induced cancer cell plasticity. J Clin Invest 2024; 134:e166847. [PMID: 38236642 PMCID: PMC10940099 DOI: 10.1172/jci166847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Cancer cell plasticity contributes to therapy resistance and metastasis, which represent the main causes of cancer-related death, including in breast cancer. The tumor microenvironment drives cancer cell plasticity and metastasis, and unraveling the underlying cues may provide novel strategies for managing metastatic disease. Using breast cancer experimental models and transcriptomic analyses, we show that stem cell antigen-1 positive (SCA1+) murine breast cancer cells enriched during tumor progression and metastasis had higher in vitro cancer stem cell-like properties, enhanced in vivo metastatic ability, and generated tumors rich in Gr1hiLy6G+CD11b+ cells. In turn, tumor-educated Gr1+CD11b+ (Tu-Gr1+CD11b+) cells rapidly and transiently converted low metastatic SCA1- cells into highly metastatic SCA1+ cells via secreted oncostatin M (OSM) and IL-6. JAK inhibition prevented OSM/IL-6-induced SCA1+ population enrichment, while OSM/IL-6 depletion suppressed Tu-Gr1+CD11b+-induced SCA1+ population enrichment in vitro and metastasis in vivo. Moreover, chemotherapy-selected highly metastatic 4T1 cells maintained high SCA1+ positivity through autocrine IL-6 production, and in vitro JAK inhibition blunted SCA1 positivity and metastatic capacity. Importantly, Tu-Gr1+CD11b+ cells invoked a gene signature in tumor cells predicting shorter overall survival (OS), relapse-free survival (RFS), and lung metastasis in breast cancer patients. Collectively, our data identified OSM/IL-6/JAK as a clinically relevant paracrine/autocrine axis instigating breast cancer cell plasticity and triggering metastasis.
Collapse
Affiliation(s)
- Sanam Peyvandi
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Manon Bulliard
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alev Yilmaz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Annamaria Kauzlaric
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Haerri
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Oriana Coquoz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yu-Ting Huang
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Gafner
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Girieca Lorusso
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nadine Fournier
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiang Lan
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Curzio Rüegg
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Gera K, Chauhan A, Castillo P, Rahman M, Mathavan A, Mathavan A, Oganda-Rivas E, Elliott L, Wingard JR, Sayour EJ. Vaccines: a promising therapy for myelodysplastic syndrome. J Hematol Oncol 2024; 17:4. [PMID: 38191498 PMCID: PMC10773074 DOI: 10.1186/s13045-023-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Collapse
Affiliation(s)
- Kriti Gera
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Anjali Chauhan
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- Division of Hematology and Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Oganda-Rivas
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Leighton Elliott
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Mabrouk N, Racoeur C, Shan J, Massot A, Ghione S, Privat M, Dondaine L, Ballot E, Truntzer C, Boidot R, Hermetet F, Derangère V, Bruchard M, Végran F, Chouchane L, Ghiringhelli F, Bettaieb A, Paul C. GTN Enhances Antitumor Effects of Doxorubicin in TNBC by Targeting the Immunosuppressive Activity of PMN-MDSC. Cancers (Basel) 2023; 15:3129. [PMID: 37370739 DOI: 10.3390/cancers15123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Immunosuppression is a key barrier to effective anti-cancer therapies, particularly in triple-negative breast cancer (TNBC), an aggressive and difficult to treat form of breast cancer. We investigated here whether the combination of doxorubicin, a standard chemotherapy in TNBC with glyceryltrinitrate (GTN), a nitric oxide (NO) donor, could overcome chemotherapy resistance and highlight the mechanisms involved in a mouse model of TNBC. (2) Methods: Balb/C-bearing subcutaneous 4T1 (TNBC) tumors were treated with doxorubicin (8 mg/Kg) and GTN (5 mg/kg) and monitored for tumor growth and tumor-infiltrating immune cells. The effect of treatments on MDSCs reprogramming was investigated ex vivo and in vitro. (3) Results: GTN improved the anti-tumor efficacy of doxorubicin in TNBC tumors. This combination increases the intra-tumor recruitment and activation of CD8+ lymphocytes and dampens the immunosuppressive function of PMN-MDSCs PD-L1low. Mechanistically, in PMN-MDSC, the doxorubicin/GTN combination reduced STAT5 phosphorylation, while GTN +/- doxorubicin induced a ROS-dependent cleavage of STAT5 associated with a decrease in FATP2. (4) Conclusion: We have identified a new combination enhancing the immune-mediated anticancer therapy in a TNBC mouse model through the reprograming of PMN-MDSCs towards a less immunosuppressive phenotype. These findings prompt the testing of GTN combined with chemotherapies as an adjuvant in TNBC patients experiencing treatment failure.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Aurélie Massot
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Malorie Privat
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Lucile Dondaine
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Elise Ballot
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Caroline Truntzer
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center-UNICANCER, CNRS UMR 6302, 21000 Dijon, France
| | | | - Valentin Derangère
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Mélanie Bruchard
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Frédérique Végran
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - François Ghiringhelli
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| |
Collapse
|
16
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers GD, Liu Q, Liu X, Boothby M, Weiss VL, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 2023; 22:92. [PMID: 37270599 PMCID: PMC10239119 DOI: 10.1186/s12943-023-01789-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. METHODS To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven BrafV600E/Pten-/-/Cxcr2-/- and NRasQ61R/INK4a-/-/Cxcr2-/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in BrafV600E/Pten-/- and NRasQ61R/INK4a-/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). RESULTS Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1, a key tumor suppressive transcription factor, was the only gene significantly induced with a log2 fold-change greater than 2 in these three different melanoma models. CONCLUSIONS Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
Affiliation(s)
- J Yang
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - K Bergdorf
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - C Yan
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - W Luo
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - S C Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - G D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - Q Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - X Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37203-1742, USA
| | - M Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - V L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - S M Groves
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - A N Oleskie
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - X Zhang
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA
| | - D Y Maeda
- Syntrix Pharmaceuticals, Auburn, WA, 98001, USA
| | - J A Zebala
- Syntrix Pharmaceuticals, Auburn, WA, 98001, USA
| | - V Quaranta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
- Department of Biochemistry, Vanderbilt University, TN, 37240, Nashville, USA
| | - A Richmond
- TVHS Department of Veterans Affairs, Nashville, TN, 37212, USA.
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| |
Collapse
|
17
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
18
|
Yang J, Bergdorf K, Yan C, Luo W, Chen SC, Ayers D, Liu Q, Liu X, Boothby M, Groves SM, Oleskie AN, Zhang X, Maeda DY, Zebala JA, Quaranta V, Richmond A. CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529548. [PMID: 36865260 PMCID: PMC9980137 DOI: 10.1101/2023.02.22.529548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. Methods To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven Braf V600E /Pten -/- /Cxcr2 -/- and NRas Q61R /INK4a -/- /Cxcr2 -/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in Braf V600E /Pten -/- and NRas Q61R /INK4a -/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). Results Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1 , a key tumor suppressive transcription factor, was the only gene significantly induced with a log 2 fold-change greater than 2 in these three different melanoma models. Conclusions Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Collapse
|
19
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
20
|
Van Hoof M, Claes S, Boon K, Van Loy T, Schols D, Dehaen W, De Jonghe S. Exploration of Pyrido[3,4- d]pyrimidines as Antagonists of the Human Chemokine Receptor CXCR2. Molecules 2023; 28:molecules28052099. [PMID: 36903345 PMCID: PMC10004157 DOI: 10.3390/molecules28052099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Upregulated CXCR2 signalling is found in numerous inflammatory, autoimmune and neurodegenerative diseases, as well as in cancer. Consequently, CXCR2 antagonism is a promising therapeutic strategy for treatment of these disorders. We previously identified, via scaffold hopping, a pyrido[3,4-d]pyrimidine analogue as a promising CXCR2 antagonist with an IC50 value of 0.11 µM in a kinetic fluorescence-based calcium mobilization assay. This study aims at exploring the structure-activity relationship (SAR) and improving the CXCR2 antagonistic potency of this pyrido[3,4-d]pyrimidine via systematic structural modifications of the substitution pattern. Almost all new analogues completely lacked the CXCR2 antagonism, the exception being a 6-furanyl-pyrido[3,4-d]pyrimidine analogue (compound 17b) that is endowed with similar antagonistic potency as the original hit.
Collapse
Affiliation(s)
- Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Katrijn Boon
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation—Laboratory of Virology and Chemotherapy, KU Leuven—Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
21
|
Kato T, Fukushima H, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Takao S, Choyke PL, Kobayashi H. Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response. Oncoimmunology 2022; 11:2152248. [PMID: 36465486 PMCID: PMC9718564 DOI: 10.1080/2162402x.2022.2152248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The immune system is recognized as an important factor in regulating the development, progression, and metastasis of cancer. Myeloid-derived suppressor cells (MDSCs) are a major immune-suppressive cell type by interfering with T cell activation, promoting effector T cell apoptosis, and inducing regulatory T cell expansion. Consequently, reducing or eliminating MDSCs has become a goal of some systemic immunotherapies. However, by systemically reducing MDSCs, unwanted side effects can occur. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed treatment that selectively kills targeted cells without damaging adjacent normal cells. The aim of this study is to evaluate the antitumor efficacy of MDSC-directed NIR-PIT utilizing anti-Ly6G antibodies to specifically destroy polymorphonuclear (PMN)-MDSCs in the tumor microenvironment (TME) in syngeneic mouse models. PMN-MDSCs were selectively eliminated within tumors by Ly6G-targeted NIR-PIT. There was significant tumor growth suppression and prolonged survival in three treated tumor models. In the early phase after NIR-PIT, dendritic cell maturation/activation and CD8+ T cell activation were enhanced in both intratumoral tissues and tumor-draining lymph nodes, and NK cells demonstrated increased expression of cytotoxic molecules. Host immunity remained activated in the TME for at least one week after NIR-PIT. Abscopal effects in bilateral tumor models were observed. Furthermore, the combination of NIR-PIT targeting cancer cells and PMN-MDSCs yielded synergistic effects and demonstrated highly activated host tumor immunity. In conclusion, we demonstrated that selective local PMN-MDSCs depletion by NIR-PIT could be a promising new cancer immunotherapy.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA,CONTACT Hisataka Kobayashi Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD20892, USA
| |
Collapse
|
22
|
Role of Staphylococcus aureus Formate Metabolism during Prosthetic Joint Infection. Infect Immun 2022; 90:e0042822. [PMID: 36286525 PMCID: PMC9670962 DOI: 10.1128/iai.00428-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are bacterial communities characterized by antibiotic tolerance.
Staphylococcus aureus
is a leading cause of biofilm infections on medical devices, including prosthetic joints, which represent a significant health care burden. The major leukocyte infiltrate associated with
S. aureus
prosthetic joint infection (PJI) is granulocytic myeloid-derived suppressor cells (G-MDSCs), which produce IL-10 to promote biofilm persistence by inhibiting monocyte and macrophage proinflammatory activity.
Collapse
|
23
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
24
|
Moser B. Emerging Roles of Chemokines in Cancer Immunotherapy. Cancers (Basel) 2022; 14:3593. [PMID: 35892852 PMCID: PMC9331769 DOI: 10.3390/cancers14153593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
This series of 15 articles (4 original articles and 11 reviews) is presented by international leaders in chemokine research [...].
Collapse
Affiliation(s)
- Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath, Cardiff CF14 4XN, UK
| |
Collapse
|
25
|
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: Building a bridge over troubled waters. Cell 2022; 185:2770-2788. [PMID: 35835100 PMCID: PMC9555301 DOI: 10.1016/j.cell.2022.06.035] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 12/16/2022]
Abstract
Cancer vaccines aim to direct the immune system to eradicate cancer cells. Here we review the essential immunologic concepts underpinning natural immunity and highlight the multiple unique challenges faced by vaccines targeting cancer. Recent technological advances in mass spectrometry, neoantigen prediction, genetically and pharmacologically engineered mouse models, and single-cell omics have revealed new biology, which can help to bridge this divide. We particularly focus on translationally relevant aspects, such as antigen selection and delivery and the monitoring of human post-vaccination responses, and encourage more aggressive exploration of novel approaches.
Collapse
Affiliation(s)
- MacLean C Sellars
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Edward F Fritsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
26
|
Xu Y, Cao C, Zhu Z, Wang Y, Tan Y, Xu X. Novel Hypoxia-Associated Gene Signature Depicts Tumor Immune Microenvironment and Predicts Prognosis of Colon Cancer Patients. Front Genet 2022; 13:901734. [PMID: 35734431 PMCID: PMC9208084 DOI: 10.3389/fgene.2022.901734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, a typical hallmark of numerous tumors, indicates poor infiltration of antitumor lymphocytes, as well as facilitates the development, progression, and drug resistance of malignant cells. Here, the present research was performed to identify novel hypoxia-related molecular markers and their correlation to the tumor immune microenvironment (TIME) in colon cancer. The expression of hypoxia-related gene signature was extracted from The Cancer Genome Atlas (TCGA) COAD cohort. Based on this signature, a risk score model was constructed using the Lasso regression model. Its discrimination ability and stability were validated in another independent cohort (GSE17536) from Gene Expression Omnibus (GEO) database. Moreover, molecular biology experiments (quantitative real-time PCR and multiple immunohistochemistry) were performed to validate the results of bioinformatics analyses. Three hub genes, including PPFIA4, SERPINE1, and STC2, were chosen to build the risk score model. All of these genes were increasingly expressed in the hypoxia subgroup (HS). Compared with the normoxia subgroup (NS), HS had worse pathological features (T, N, M, and stage) and overall survival (OS), more expression of immune checkpoint molecules, poorer infiltration of some pro-inflammation immune cells (CD4+ T cells and CD8+ T cells), and enriched infiltration of M0/M2 macrophages. After the risk model was proven to be valuable and stable, a nomogram was built based on this model and some clinicopathological factors. Moreover, it had been identified that three hub genes were all increasingly expressed in hypoxic conditions by quantitative real-time PCR (qPCR). The results of multiple immunohistochemistry (mIHC) also showed that higher expression of hub genes was associated with poorer infiltration of pro-inflammation immune cells (CD8+ T cells and M1 macrophages) and richer infiltration of anti-inflammation immune cells (Treg cells and M2 macrophages). In conclusion, the present study uncovered the relations among hypoxia, TIME, and clinicopathological features of colon cancer. It might provide new insight and a potential therapeutic target for immunotherapy.
Collapse
Affiliation(s)
- Yixin Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Can Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyan Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Wang
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- *Correspondence: Xuezhong Xu, ; Yulin Tan,
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- *Correspondence: Xuezhong Xu, ; Yulin Tan,
| |
Collapse
|
27
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|