1
|
Peleman C, Francque S, Berghe TV. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 2024; 102:105088. [PMID: 38537604 PMCID: PMC11026979 DOI: 10.1016/j.ebiom.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Gerber TS, Witzel HR, Weinmann A, Bartsch F, Schindeldecker M, Galle PR, Lang H, Roth W, Ridder DA, Straub BK. Reduced Lipid Peroxidation Predicts Unfavorable Prognosis in Hepatocellular Carcinoma, but Not Intrahepatic Cholangiocarcinoma. Biomedicines 2023; 11:2471. [PMID: 37760911 PMCID: PMC10525544 DOI: 10.3390/biomedicines11092471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a significant contributor to cancer-related mortality worldwide. Oxidative stress and lipid peroxidation play a key role in chronic liver diseases and have been shown to be pivotal for tumor initiation and progression. 4-hydroxy-nonenal (4-HNE), one of the major mediators of oxidative stress and a well-established biomarker for lipid peroxidation, can act as a signal transducer, inducing inflammation and exerting carcinogenic effects. However, the role of 4-HNE in primary liver cancer remains poorly explored. In this study, we investigated 4-HNE levels in 797 liver carcinomas, including 561 HCC and 236 iCCA, by immunohistochemistry. We then correlated 4-HNE levels with comprehensive clinical data and survival outcomes. In HCC, lower expression levels of 4-HNE were associated with vascular invasion, a high tumor grade, a macrotrabecular-massive HCC subtype, and poor overall survival. Concerning iCCA, large duct iCCA showed significantly higher 4-HNE levels when compared to small duct iCCA. Yet, in iCCA, 4-HNE levels did not correlate with known prognostic parameters or survival outcomes. To conclude, in HCC but not in iCCA, low amounts of 4-HNE predict unfavorable survival outcomes and are associated with aggressive tumor behavior. These findings provide insights into the role of 4-HNE in liver cancer progression and may enable novel therapeutic strategies.
Collapse
Affiliation(s)
- Tiemo Sven Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.S.G.); (H.R.W.); (M.S.); (W.R.); (D.A.R.)
| | - Hagen Roland Witzel
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.S.G.); (H.R.W.); (M.S.); (W.R.); (D.A.R.)
| | - Arndt Weinmann
- Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (P.R.G.)
| | - Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (F.B.); (H.L.)
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.S.G.); (H.R.W.); (M.S.); (W.R.); (D.A.R.)
- Tissue Biobank, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Peter R. Galle
- Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (P.R.G.)
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (F.B.); (H.L.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.S.G.); (H.R.W.); (M.S.); (W.R.); (D.A.R.)
| | - Dirk Andreas Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.S.G.); (H.R.W.); (M.S.); (W.R.); (D.A.R.)
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.S.G.); (H.R.W.); (M.S.); (W.R.); (D.A.R.)
| |
Collapse
|
3
|
Liu K, Dennis C, Prince DS, Marsh-Wakefield F, Santhakumar C, Gamble JR, Strasser SI, McCaughan GW. Vessels that encapsulate tumour clusters vascular pattern in hepatocellular carcinoma. JHEP Rep 2023; 5:100792. [PMID: 37456680 PMCID: PMC10339254 DOI: 10.1016/j.jhepr.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023] Open
Abstract
Vessels that encapsulate tumour clusters (VETC) is a distinct histologic vascular pattern associated with a novel mechanism of metastasis. First described in human cancers in 2004, its prevalence and prognostic significance in hepatocellular carcinoma (HCC) has only been appreciated in the past decade with a rapidly increasing body of literature. A robust biomarker of aggressive disease, the VETC pattern is easy to recognise but relies on histologic examination of tumour tissue for its diagnosis. Radiological recognition of the VETC pattern is an area of active research and is becoming increasingly accurate. As a prognostic marker, VETC has consistently proven to be an independent predictor of disease recurrence and overall survival in patients with HCC undergoing resection and liver transplantation. It can also guide treatment by predicting response to other therapies such as transarterial chemoembolisation and sorafenib. Without prospective randomised-controlled trials or routine evaluation of VETC in clinical practice, there are currently no firm treatment recommendations for VETC-positive tumours, although some perspectives are provided in this review based on the latest knowledge of their pathogenesis - a complex interplay between tumour angiogenesis and the immune microenvironment. Nevertheless, VETC has great potential as a future biomarker that could take us one step closer to precision medicine for HCC.
Collapse
Affiliation(s)
- Ken Liu
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
| | - Claude Dennis
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David S. Prince
- Department of Gastroenterology, Liverpool Hospital, Sydney, NSW, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
- Human Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Cositha Santhakumar
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
- Human Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer R. Gamble
- Centre for Endothelium, Vascular Biology Program, Centenary Institute, Sydney, NSW, Australia
| | - Simone I. Strasser
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
| |
Collapse
|
4
|
Xiong X, Song Q, Jing M, Yan W. Identification of PANoptosis-Based Prognostic Signature for Predicting Efficacy of Immunotherapy and Chemotherapy in Hepatocellular Carcinoma. Genet Res (Camb) 2023; 2023:6879022. [PMID: 37313428 PMCID: PMC10260314 DOI: 10.1155/2023/6879022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Background PANoptosis has been a research hotspot, but the role of PANoptosis in hepatocellular carcinoma (HCC) remains widely unknown. Drug resistance and low response rate are the main limitations of chemotherapy and immunotherapy in HCC. Thus, construction of a prognostic signature to predict prognosis and recognize ideal patients for corresponding chemotherapy and immunotherapy is necessary. Method The mRNA expression data of HCC patients was collected from TCGA database. Through LASSO and Cox regression, we developed a prognostic signature based on PANoptosis-related genes. KM analysis and ROC curve were implemented to evaluate the prognostic efficacy of this signature, and ICGC and GEO database were used as external validation cohorts. The immune cell infiltration, immune status, and IC50 of chemotherapeutic drugs were compared among different risk subgroups. The relationships between the signature and the efficacy of ICI therapy, sorafenib treatment, and transcatheter arterial chemoembolization (TACE) therapy were investigated. Result A 3-gene prognostic signature was constructed which divided the patients into low- and high-risk subgroups. Low-risk patients had better prognosis, and the risk score was proved to be an independent predictor of overall survival (OS), which had a well predictive effect. Patients in high-risk population had more immunosuppressive cells (Tregs, M0 macrophages, and MDSCs), higher TIDE score and TP53 mutation rate, and elevated activity of base excision repair (BER) pathways. Patients with low risk benefited more from ICI, TACE, and sorafenib therapy. The predictive value of the risk score was comparable with TIDE and MSI for OS under ICI therapy. The risk score could be a biomarker to predict the response to ICI, TACE, and sorafenib therapy. Conclusion The novel signature based on PANoptosis is a promising biomarker to distinguish the prognosis predict the benefit of ICI, TACE, and sorafenib therapy, and forecast the response to them.
Collapse
Affiliation(s)
- Xiaofeng Xiong
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Su W, Gao W, Zhang R, Wang Q, Li L, Bu Q, Xu Z, Liu Z, Wang M, Zhu Y, Wu G, Zhou H, Wang X, Lu L. TAK1 deficiency promotes liver injury and tumorigenesis via ferroptosis and macrophage cGAS-STING signalling. JHEP Rep 2023; 5:100695. [PMID: 36968217 PMCID: PMC10033999 DOI: 10.1016/j.jhepr.2023.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background & Aims Oxidative stress-mediated ferroptosis and macrophage-related inflammation play an important role in various liver diseases. Here, we explored if and how hepatocyte ferroptosis regulates macrophage stimulator of interferon genes (STING) activation in the development of spontaneous liver damage, fibrosis, and tumorigenesis. Methods We used a transforming growth factor-beta-activated kinase 1 (TAK1) deficiency-induced model of spontaneous liver damage, fibrosis, and tumorigenesis to investigate hepatocyte ferroptosis and its impact on macrophage STING signalling. Primary hepatocytes and macrophages were used for in vitro experiments. Results Significant liver injury and increased numbers of intrahepatic M1 macrophages were found in hepatocyte-specific TAK1-deficient (TAK1ΔHEP) mice, peaking at 4 weeks and gradually decreasing at 8 and 12 weeks. Meanwhile, activation of STING signalling was observed in livers from TAK1ΔHEP mice at 4 weeks and had decreased at 8 and 12 weeks. Treatment with a STING inhibitor promoted macrophage M2 polarisation and alleviated liver injury, fibrosis, and tumour burden. TAK1 deficiency exacerbated liver iron metabolism in mice with a high-iron diet. Moreover, consistent with the results from single-cell RNA-Seq dataset, TAK1ΔHEP mice demonstrated an increased oxidative response and hepatocellular ferroptosis, which could be inhibited by reactive oxygen species scavenging. Suppression of ferroptosis by ferrostatin-1 inhibited the activation of macrophage STING signalling, leading to attenuated liver injury and fibrosis and a reduced tumour burden. Mechanistically, increased intrahepatic and serum levels of 8-hydroxydeoxyguanosine were detected in TAK1ΔHEP mice, which was suppressed by ferroptosis inhibition. Treatment with 8-hydroxydeoxyguanosine antibody inhibited macrophage STING activation in TAK1ΔHEP mice. Conclusions Hepatocellular ferroptosis-derived oxidative DNA damage promotes macrophage STING activation to facilitate the development of liver injury, fibrosis, and tumorigenesis. Inhibition of macrophage STING may represent a novel therapeutic approach for the prevention of chronic liver disease. Impact and implications The precise mechanism by which hepatocyte ferroptosis regulates macrophage STING activation in the progression of liver damage, fibrosis, and tumorigenesis remains unclear. Herein, we show that deletion of TAK1 in hepatocytes caused oxidative stress-mediated ferroptosis and macrophage-related inflammation in the development of spontaneous liver injury, fibrosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wantong Su
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Weicheng Gao
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qi Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lei Li
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qingfa Bu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zibo Xu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zheng Liu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Mingming Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yaqing Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
| | - Guoping Wu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China.
| | - Haoming Zhou
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Corresponding authors. Addresses: Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. Tel.: +86-25-68303947.
| | - Xun Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Corresponding authors. Addresses: Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China. Tel.: +86-25-68303947.
| | - Ling Lu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Zhang X, Zhang Y, Zhou P, Ai J, Liu X, Zhang Q, Wang Z, Wang H, Zhang W, Zhang J, Huang Y. Down-regulated cylindromatosis enhances NF-κB activation and aggravates inflammation in HBV-ACLF patients. Emerg Microbes Infect 2022; 11:1586-1601. [PMID: 35579924 PMCID: PMC9186363 DOI: 10.1080/22221751.2022.2077128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathogenesis of liver in patients with hepatitis B virus-associated acute chronic liver failure (HBV-ACLF) remains largely unknown. We aimed to elucidate the molecular mechanism underlying the pathogenesis of liver in HBV-ACLF patients by using multiple approaches including transcriptome analysis. We performed transcriptomic sequencing analysis on the liver of HBV-ACLF patients (n = 6), chronic hepatitis B (n = 6), liver cirrhosis (n = 6) and normal control (n = 5), then explored the potential pathogenesis mechanism in liver specimen from another 48 subjects and further validated the molecular and cellular mechanisms using THP-1 cells. RNA-sequencing data analysis indicated that, among the genes up-regulated in HBV-ACLF, genes related to inflammatory response and chemotaxis accounted for a large proportion of the total DEGs. A number of key chemokines (CCL2, CCL5, CCL20, CXCL5, CXCL6, CXCL8) and NF-ĸB pathway were identified to be robust in the liver samples from HBV-ACLF patients. Interestingly, cylindromatosis (CYLD) was found to be downregulated in the liver of HBV-ACLF patients, in line with the well-established role of CYLD in regulating most of the chemokines and pro-inflammatory cytokines (CCL2, CCL5, CCL20, CXCL5, CXCL6, CXCL8, IL-6, IL-1β) via inhibition of NF-ĸB. Indeed, the knockdown of CYLD resulted in sustained activation of NF-ĸB in macrophages and enhanced chemokines and inflammatory cytokines production, which in turn enhanced chemotactic migration of neutrophil, monocyte, T lymphocytes, and NK cell. In conclusions, down-regulated CYLD aggravated inflammatory cell chemotaxis through enhancing NF-κB activation in HBV-ACLF patients, thereby participating in the pathogenesis of HBV-ACLF injury.
Collapse
Affiliation(s)
- Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Pu Zhou
- Huashan Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaoqin Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Quanbao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Infectious Diseases Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Karl M, Hasselwander S, Zhou Y, Reifenberg G, Kim YO, Park KS, Ridder DA, Wang X, Seidel E, Hövelmeyer N, Straub BK, Li H, Schuppan D, Xia N. Dual roles of B lymphocytes in mouse models of diet-induced nonalcoholic fatty liver disease. Hepatology 2022; 76:1135-1149. [PMID: 35218234 DOI: 10.1002/hep.32428] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Growing evidence suggests an important role of B cells in the development of NAFLD. However, a detailed functional analysis of B cell subsets in NAFLD pathogenesis is lacking. APPROACH AND RESULTS In wild-type mice, 21 weeks of high fat diet (HFD) feeding resulted in NAFLD with massive macrovesicular steatosis, modest hepatic and adipose tissue inflammation, insulin resistance, and incipient fibrosis. Remarkably, Bnull (JHT) mice were partially protected whereas B cell harboring but antibody-deficient IgMi mice were completely protected from the development of hepatic steatosis, inflammation, and fibrosis. The common feature of JHT and IgMi mice is that they do not secrete antibodies, whereas HFD feeding in wild-type mice led to increased levels of serum IgG2c. Whereas JHT mice have no B cells at all, regulatory B cells were found in the liver of both wild-type and IgMi mice. HFD reduced the number of regulatory B cells and IL-10 production in the liver of wild-type mice, whereas these increased in IgMi mice. Livers of patients with advanced liver fibrosis showed abundant deposition of IgG and stromal B cells and low numbers of IL-10 expressing cells, compatible with our experimental data. CONCLUSIONS B lymphocytes have both detrimental and protective effects in HFD-induced NAFLD. The lack of secreted pathogenic antibodies protects partially from NAFLD, whereas the presence of certain B cell subsets provides additional protection. IL-10-producing regulatory B cells may represent such a protective B cell subset.
Collapse
Affiliation(s)
- Martin Karl
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Solveig Hasselwander
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yawen Zhou
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Gisela Reifenberg
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Kyoung-Sook Park
- Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Dirk A Ridder
- Institute of Pathology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Xiaoyu Wang
- Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Eric Seidel
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Beate K Straub
- Institute of Pathology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
8
|
Gerber TS, Ridder DA, Schindeldecker M, Weinmann A, Duret D, Breuhahn K, Galle PR, Schirmacher P, Roth W, Lang H, Straub BK. Constitutive Occurrence of E:N-cadherin Heterodimers in Adherens Junctions of Hepatocytes and Derived Tumors. Cells 2022; 11:cells11162507. [PMID: 36010583 PMCID: PMC9406782 DOI: 10.3390/cells11162507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cell–cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction’s transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial–mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins α- and β-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT.
Collapse
Affiliation(s)
- Tiemo Sven Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Dirk Andreas Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Tissue Biobank, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arndt Weinmann
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Diane Duret
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Peter R. Galle
- 1st Department of Internal Medicine, Gastroenterology and Hepatology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|