1
|
Yiu DCY, Lin H, Wong VWS, Wong GLH, Liu K, Yip TCF. Dipeptidyl peptidase-4 inhibitors are associated with improved survival of patients with diabetes mellitus and hepatocellular carcinoma receiving immunotherapy: Letter to the editor on "Statin and aspirin for chemoprevention of hepatocellular carcinoma: Time to use or wait further?". Clin Mol Hepatol 2024; 30:970-973. [PMID: 38964740 PMCID: PMC11540373 DOI: 10.3350/cmh.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024] Open
Affiliation(s)
- Dorothy Cheuk-Yan Yiu
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Huapeng Lin
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Ken Liu
- Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
He X, Dou L, Wang J, Xia L, Miao J, Yan Y. Nobiletin regulates the proliferation and migration of ovarian cancer A2780 cells via DPP4 and TXNIP. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03334-x. [PMID: 39102034 DOI: 10.1007/s00210-024-03334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Nobiletin is an active compound extracted from citrus fruits. Research has indicated that nobiletin has a potential inhibitory effect on ovarian cancer (OV). However, the mechanism of action remains unclear. The OV A2780 cells were treated using nobiletin, cell viability was examined using a cell counting kit-8 experiment, and cell migration was examined with a wound healing experiment. Nobiletin targets were retrieved from target databases. Differentially expressed genes (DEG) and weighted gene co-expression network analysis (WGCNA) were conducted on GSE26712 (OV). The intersection of the critical genes for nobiletin's action on OV and gene enrichment and immune infiltration analyses were performed. The Cancer Genome Atlas-OV data and molecular docking helped validate the findings. After adding nobiletin, cell viability and migration significantly decreased (P < 0.01). A total of 88 nobiletin targets and 1288 DEG were identified. The intersection genes were enriched inflammatory response and response to hypoxia. The most related module obtained from WGCNA contained 414 genes (correlation coefficient = 0.77, P < 0.01). DPP4 and TXNIP were recognized as the hub genes. The abundance of macrophages M2 and mast cells activated significantly enhanced with increased DPP4 expression (P < 0.05). The binding energy between DPP4/TXNIP and nobiletin was - 7.012/ - 7.184 kcal/mol, forming 5/2 hydrogen bonds. Nobiletin effectively suppresses the viability and migration of OV A2780 cells. In this process, DPP4 and TXNIP are the key target, immune regulation, and oxidative stress playing significant roles.
Collapse
Affiliation(s)
- Xiuzhen He
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lu Dou
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Jie Wang
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lili Xia
- The Third Surgery, Chongqing City Wanzhou District Shanghai Hospital, Chongqing, 404120, China
| | - Jiawei Miao
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Yongbo Yan
- Pharmacy Department, The People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing Three Gorges Medical College, No. 27, Guoben Road, Wanzhou District, Chongqing, 404197, China.
| |
Collapse
|
3
|
Xiong J, Sun C, Wen X, Hou Y, Liang M, Liu J, Wei Q, Yuan F, Peng C, Chen Y, Chang Y, Wang C, Zhang J. miR-548ag promotes DPP4 expression in hepatocytes through activation of TLR(7/8)/NF-κB pathway. Int J Obes (Lond) 2024; 48:941-953. [PMID: 38424257 PMCID: PMC11217002 DOI: 10.1038/s41366-024-01504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE In our previous study, we identified a notable increase in miR-548ag content after obesity, which contributes to the progression of Type 2 diabetes Mellitus(T2DM) through the up-regulation of Dipeptidyl Peptidase-4(DPP4) expression within the liver. However, the precise molecular mechanisms underlying the upregulation of DPP4 by miR-548ag remain elusive. Mature miRNAs rich in GU sequences can activate the TLR(7/8)/NF-κB signalling pathway, which transcriptionally activates DPP4 expression. Notably, the proportion of GU sequences in hsa-miR-548ag was found to be 47.6%. The study proposes a hypothesis suggesting that miR-548ag could potentially increase DPP4 expression in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. METHODS Male C57BL/6J mice were fed normal chow diet (NCD, n = 16) or high-fat diet (HFD, n = 16) for 12 weeks. For a duration of 6 weeks, NCD mice received intraperitoneal injections of a miR-548ag mimic, while HFD mice and db/db mice (n = 16) were administered intraperitoneal injections of a miR-548ag inhibitor. qRT-PCR and Western Blot were used to detect the expression level of miR-548ag, DPP4 and the activation of TLR(7/8)/NF-κB signalling pathway. HepG2 and L02 cells were transfected with miR-548ag mimic, miR-548ag inhibitor, TLR7/8 interfering fragment, and overexpression of miR-548ag while inhibiting TLR7/8, respectively. RESULTS (1) We observed elevated levels of miR-548ag in the serum, adipose tissue, and liver of obese mice, accompanied by an upregulation of TLR7/8, pivotal protein in the NF-κB pathway, and DPP4 expression in the liver. (2) miR-548ag promotes DPP4 expression in hepatocytes via the TLR(7/8)/NF-κB signalling pathway, resulting in a reduction in the glucose consumption capacity of hepatocytes. (3) The administration of a miR-548ag inhibitor enhanced glucose tolerance and insulin sensitivity in db/db mice. CONCLUSIONS MiR-548ag promotes the expression of DPP4 in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. MiR-548ag may be a potential target for the treatment of T2DM.
Collapse
Affiliation(s)
- Jianyu Xiong
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Chaoyue Sun
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jie Liu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianqian Wei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yongsheng Chang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300000, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
4
|
Kotrulev M, Gomez-Touriño I, Cordero OJ. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers (Basel) 2024; 16:2427. [PMID: 39001488 PMCID: PMC11240764 DOI: 10.3390/cancers16132427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Soluble CD26 (sCD26), a glycoprotein with dipeptidyl peptidase (DPP4) enzymatic activity, can contribute to early diagnosis of colorectal cancer and advanced adenomas and has been studied, including for prognostic purposes, across various other types of cancer and disease. The latest research in this field has confirmed that most, though not all, serum/plasma sCD26 is related to inflammation. The shedding and/or secretion of sCD26 from different immune cells are being investigated, and blood DPP4 activity levels do not correlate very strongly with protein titers. Some of the main substrates of this enzyme are key chemokines involved in immune cell migration, and both soluble and cell-surface CD26 can bind adenosine deaminase (ADA), an enzyme involved in the metabolism of immunosuppressor extracellular adenosine. Of note, there are T cells enriched in CD26 expression and, in mice tumor models, tumor infiltrating lymphocytes exhibited heightened percentages of CD26+ correlating with tumor regression. We employed sCD26 as a biomarker in the follow-up after curative resection of colorectal cancer for the early detection of tumor recurrence. Changes after treatment with different biological disease-modifying antirheumatic drugs, including Ig-CTLA4, were also observed in rheumatoid arthritis. Serum soluble CD26/DPP4 titer variation has recently been proposed as a potential prognostic biomarker after a phase I trial in cancer immunotherapy with a humanized anti-CD26 antibody. We propose that dynamic monitoring of sCD26/DPP4 changes, in addition to well-known inflammatory biomarkers such as CRP already in use as informative for immune checkpoint immunotherapy, may indicate resistance or response during the successive steps of the treatment. As tumor cells expressing CD26 can also produce sCD26, the possibility of sorting immune- from non-immune-system-originated sCD26 is discussed.
Collapse
Affiliation(s)
- Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Iria Gomez-Touriño
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Oscar J. Cordero
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Cordero OJ, Kotrulev M, Gomez-Touriño I. Comment on Lai et al. Dipeptidyl Peptidase 4 Stimulation Induces Adipogenesis-Related Gene Expression of Adipose Stromal Cells. Int. J. Mol. Sci. 2023, 24, 16101. Int J Mol Sci 2024; 25:7093. [PMID: 39000199 PMCID: PMC11241282 DOI: 10.3390/ijms25137093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Adiponectin is a circulating hormone secreted by adipose tissue that exerts, unlike other adipokines such as leptin, anti-inflammatory, anti-atherosclerotic and other protective effects on health. Adiponectin receptor agonists are being tested in clinical trials and are expected to show benefits in many diseases. In a recent article, LW Chen's group used monocyte chemoattractant protein-1 (MCP-1/CCL2) to improve plasma levels of adiponectin, suggesting the involvement of dipeptidyl peptidase 4 (DPP4/CD26) in the mechanism. Here, we discuss the significance of the role of DPP4, favoring the increase in DPP4-positive interstitial progenitor cells, a finding that fits with the greater stemness and persistence of other DPP4/CD26-positive cells.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
| | - Martin Kotrulev
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Iria Gomez-Touriño
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Ma P, Ou H, Sun Z, Lu Y, Li M, Xu L, Liang Y, Zheng J, Ou Y. IAVPGEVA: Orally Available DPP4-Targeting Soy Glycinin Derived Octapeptide with Therapeutic Potential in Nonalcoholic Steatohepatitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7167-7178. [PMID: 38511978 DOI: 10.1021/acs.jafc.3c08932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity. In conclusion, the results suggest that SGP8 is an orally available DPP4-targeting peptide with therapeutic potential in NASH.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Hao Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Zhongkan Sun
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yunbiao Lu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Mengdan Li
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Liuxin Xu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yan Liang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Jiawei Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu, China
| |
Collapse
|
7
|
Yang H, Cong T, Luo Y, Yang C, Ren J, Li X. Prognostic Effect of Sarcopenia in Hepatocellular Carcinoma Patients Targeted with Interventional Therapy Combined with Immunotherapy and Targeted Therapy. J Hepatocell Carcinoma 2024; 11:175-189. [PMID: 38283695 PMCID: PMC10822115 DOI: 10.2147/jhc.s444530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
Objective To investigated the association between sarcopenia and the prognosis and adverse events of hepatocellular carcinoma (HCC) patients undergoing interventional therapy combined with immunotherapy and targeted therapy. Methods Between January 2019 and December 2022, patients with unresectable HCC who received interventional therapy combined with immunotherapy and targeted therapy were included in this study. Total skeletal muscle area at the L3 level was normalized for height in m2 as the skeletal muscle index (SMI). All patients were divided into low and high SMI group according to the median SMI. Results Ninety-six consecutive patients were included eventually, with 49 patients in the high-SMI group and 47 patients in the low-SMI group. In the low-SMI group, the median overall survival (OS) was 459.00 days (95% CI, 334.76-583.24 days), and the 3-, 6-, and 12-month OS rates were 100%, 89.4% and 68.1%, respectively. In the high-SMI group, the median OS was not reached, and the 3-, 6-, and 12-month OS rates were 100%, 98% and 79.5%, respectively (p<0.05). SMI and Barcelona Clinic Liver Cancer (BCLC) C stage were independent prognostic factors for OS (p<0.05). In the low-SMI group, 26 patients had treatment-related adverse events (TRAEs), resulting in dose adjustment or treatment suspension for 10 patients. In the high-SMI group, 33 patients had TRAEs, and 18 patients received dose adjustment or treatment suspension; the between-group difference was nonsignificant (p>0.05). Conclusion SMI is associated with the prognosis of HCC patients receiving interventional therapy combined with immunotherapy and targeted therapy, and sarcopenia is an independent risk factor for OS. However, sarcopenia does not seem to predict the occurrence of adverse events.
Collapse
Affiliation(s)
- Hongcai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Tianhao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Chao Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
8
|
Chu X, Hou Y, Zhang X, Li M, Ma D, Tang Y, Yuan C, Sun C, Liang M, Liu J, Wei Q, Chang Y, Wang C, Zhang J. Hepatic Glucose Metabolism Disorder Induced by Adipose Tissue-Derived miR-548ag via DPP4 Upregulation. Int J Mol Sci 2023; 24:ijms24032964. [PMID: 36769291 PMCID: PMC9917501 DOI: 10.3390/ijms24032964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the molecular mechanism underlying the regulation of glucose metabolism by miR-548ag. For the first time, we found that miR-548ag expression was elevated in the abdominal adipose tissue and serum of subjects with obesity and type 2 diabetes mellitus (T2DM). The conditional knockout of adipose tissue Dicer notably reduced the expression and content of miR-548ag in mouse adipose tissue, serum, and liver tissue. The combined use of RNAseq, an miRNA target gene prediction software, and the dual luciferase reporter assay confirmed that miR-548ag exerts a targeted regulatory effect on DNMT3B and DPP4. miR-548ag and DPP4 expression was increased in the adipose tissue, serum, and liver tissue of diet-induced obese mice, while DNMT3B expression was decreased. It was subsequently confirmed both in vitro and in vivo that adipose tissue-derived miR-548ag impaired glucose tolerance and insulin sensitivity by inhibiting DNMT3B and upregulating DPP4. Moreover, miR-548ag inhibitors significantly improved the adverse metabolic phenotype in both obese mice and db/db mice. These results revealed that the expression of the adipose tissue-derived miR-548ag increased in obese subjects, and that this could upregulate the expression of DPP4 by targeting DNMT3B, ultimately leading to glucose metabolism disorder. Therefore, miR-548ag could be utilized as a potential target in the treatment of T2DM.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Medical Genetics, Medical College of Tarim University, Alaer 843300, China
| | - Yanting Hou
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Xueting Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Menghuan Li
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Dingling Ma
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yihan Tang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chenggang Yuan
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chaoyue Sun
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Maodi Liang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Jie Liu
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Qianqian Wei
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yongsheng Chang
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Cuizhe Wang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| | - Jun Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| |
Collapse
|
9
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
10
|
CD26 and Cancer. Cancers (Basel) 2022; 14:cancers14215194. [PMID: 36358613 PMCID: PMC9655702 DOI: 10.3390/cancers14215194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
|
11
|
Lou W, Gong C, Ye Z, Hu Y, Zhu M, Fang Z, Xu H. Lipid metabolic features of T cells in the Tumor Microenvironment. Lipids Health Dis 2022; 21:94. [PMID: 36203151 PMCID: PMC9535888 DOI: 10.1186/s12944-022-01705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
The tumor microenvironment (TME) is characterized by discrete changes in metabolic features of cancer and immune cells, with various implications. Cancer cells take up most of the available glucose to support their growth, thereby leaving immune cells with insufficient nutrients to expand. In the relative absence of glucose, T cells switch the metabolic program to lipid-based sources, which is pivotal to T-cell differentiation and activation in nutrient-stressed TME. Although consumption of lipids should provide an alternative energy source to starving T cells, a literature survey has revealed that it may not necessarily lead to antitumor responses. Different subtypes of T cells behave differently in various lipid overload states, which widely depends upon the kind of free fatty acids (FFA) engulfed. Key lipid metabolic genes provide cytotoxic T cells with necessary nutrients for proliferation in the absence of glucose, thereby favoring antitumor immunity, but the same genes cause immune evasion in Tmem and Treg. This review aims to detail the complexity of differential lipid metabolism in distinct subtypes of T cells that drive the antitumor or pro-tumor immunity in specific TME states. We have identified key drug targets related to lipid metabolic rewiring in TME.
Collapse
Affiliation(s)
- Wanshuang Lou
- Department of Integrated Traditional & Western Medicine, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China.,Department of Integrated Traditional & Western Medicine, Sanmen Hospital of Chinese Medicine, 317100, Sanmen, Zhejiang, China
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 221100, Xuzhou, Jiangsu, China
| | - Zhuoni Ye
- Second College of Clinical Medical, Wenzhou Medical University, 325000, Wenzhou Zhejiang, China
| | - Ynayan Hu
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China
| | - Minjing Zhu
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China.
| | - Huihui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, 317000, Linhai, Zhejiang, China.
| |
Collapse
|
12
|
Chen Y, Hu H, Yuan X, Fan X, Zhang C. Advances in Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma. Front Immunol 2022; 13:896752. [PMID: 35757756 PMCID: PMC9226303 DOI: 10.3389/fimmu.2022.896752] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is usually diagnosed in an advanced stage and has become the second deadliest type of cancer worldwide. The systemic treatment of advanced HCC has been a challenge, and for decades was limited to treatment with tyrosine kinase inhibitors (TKIs) until the application of immune checkpoint inhibitors (ICIs) became available. Due to drug resistance and unsatisfactory therapeutic effects of monotherapy with TKIs or ICIs, multi-ICIs, or the combination of ICIs with antiangiogenic drugs has become a novel strategy to treat advanced HCC. Antiangiogenic drugs mostly include TKIs (sorafenib, lenvatinib, regorafenib, cabozantinib and so on) and anti-vascular endothelial growth factor (VEGF), such as bevacizumab. Common ICIs include anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1), including nivolumab, pembrolizumab, durvalumab, and atezolizumab, and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4), including tremelimumab and ipilimumab. Combination therapies involving antiangiogenic drugs and ICIs or two ICIs may have a synergistic action and have shown greater efficacy in advanced HCC. In this review, we present an overview of the current knowledge and recent clinical developments in ICI-based combination therapies for advanced HCC and we provide an outlook on future prospects.
Collapse
Affiliation(s)
- Yue Chen
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Haoyue Hu
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Xianglei Yuan
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Fan
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Chengda Zhang
- Department of Gastroenterology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
13
|
Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential Effect of DPP-4 Inhibitors Towards Hepatic Diseases and Associated Glucose Intolerance. Diabetes Metab Syndr Obes 2022; 15:1845-1864. [PMID: 35733643 PMCID: PMC9208633 DOI: 10.2147/dmso.s369712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dipeptidyl-peptidase-4 (DPP-4) is an enzyme having various properties and physiological roles in lipid accumulation, resistance to anticancer agents, and immune stimulation. DPP-4 includes membrane-bound peptidases and is a kind of enzyme that cleaves alanine or proline-containing peptides such as incretins, chemokines, and appetite-suppressing hormones (neuropeptide) at their N-terminal dipeptides. DPP-4 plays a role in the final breakdown of peptides produced by other endo and exo-peptidases from nutritious proteins and their absorption in these tissues. DPP-4 enzyme activity has different modes of action on glucose metabolism, hunger regulation, gastrointestinal motility, immune system function, inflammation, and pain regulation. According to the literature survey, as DPP-4 levels increase in individuals with liver conditions, up-regulation of hepatic DPP-4 expression is likely to be the cause of glucose intolerance or insulin resistance. This review majorly focuses on the cleavage of alanine or proline-containing peptides such as incretins by the DPP-4 and its resulting conditions like glucose intolerance and cause of DPP-4 level elevation due to some liver conditions. Thus, we have discussed the various effects of DPP-4 on the liver diseases like hepatitis C, non-alcoholic fatty liver, hepatic regeneration and stem cell, hepatocellular carcinoma, and the impact of elevated DPP-4 levels in association with liver diseases as a cause of glucose intolerance and their treatment drug of choices. In addition, the effect of DPP-4 inhibitors on obesity and their negative aspects are also discussed in brief.
Collapse
Affiliation(s)
- Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Anjali Sharma
- Freelancer, Pharmacovigilance Expert, Uttar Pradesh, India
| | - Vaishnavi Chhabra
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Uttar Pradesh, 206130, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
- Correspondence: Abdulsalam Alhalmi, Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen, Email
| |
Collapse
|