1
|
Xia L, Ma H. Identification of a Novel Signature Based on Ferritinophagy-Related Genes to Predict Prognosis in Lung Adenocarcinoma: Focus on AHNAK2. Bioengineering (Basel) 2024; 11:1070. [PMID: 39593730 PMCID: PMC11591153 DOI: 10.3390/bioengineering11111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for over 40% of all non-small cell lung cancer (NSCLC) cases and continues to be difficult to treat despite advancements in diagnostics and therapies. Ferritinophagy, a newly recognized autophagy process linked to ferroptosis, has been associated with LUAD development. Recent studies have shown a dysregulation of genes related to ferritinophagy in LUAD, indicating its potential as a therapeutic target. METHODS We constructed a predictive model using seven genes associated with ferritinophagy. The model's accuracy was evaluated across three independent gene expression datasets. We analyzed the biological functions, immune environment, mutations, and drug sensitivities in groups with high and low risk. Utilizing a single-cell sequencing (scRNA-seq) dataset, we confirmed the expression of the model genes and identified a subtype of epithelial cells expressing AHNAK2. We further investigated the impact of the ferritinophagy-related gene AHNAK2 on LUAD cell proliferation, invasion, migration, and ferroptosis in vitro. RESULTS Our prediction model, comprising seven genes (AHNAK2, ARNTL2, CD27, LTB, SLC15A1, SLC2A1, and SYT1), has shown potential in predicting the prognosis of individuals diagnosed with LUAD. Notably, AHNAK2 impedes ferroptosis, promoting LUAD progression in vitro. CONCLUSIONS Our research suggests that ferritinophagy-associated genes are promising prognostic markers for LUAD and lay the groundwork for further exploration of ferritinophagy's role in LUAD. Furthermore, we present AHNAK2 as a novel regulator of ferroptosis, which requires further investigation to understand its mechanism.
Collapse
Affiliation(s)
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou 215006, China;
| |
Collapse
|
2
|
Donato L, Scimone C, Alibrandi S, Vadalà M, Castellucci M, Bonfiglio VME, Scalinci SZ, Abate G, D'Angelo R, Sidoti A. The genomic mosaic of mitochondrial dysfunction: Decoding nuclear and mitochondrial epigenetic contributions to maternally inherited diabetes and deafness pathogenesis. Heliyon 2024; 10:e34756. [PMID: 39148984 PMCID: PMC11324998 DOI: 10.1016/j.heliyon.2024.e34756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Aims Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Maria Vadalà
- Department of Biomolecular Strategies, Genetics and Cutting-edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Massimo Castellucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | - Vincenza Maria Elena Bonfiglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), Ophthalmology Institute, University of Palermo, 90143, Palermo, Italy
| | | | - Giorgia Abate
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
3
|
Tang NN, Xu RB, Jiang B, Zhang HL, Wang XS, Chen DD, Zhu JJ. AHNAK2 Regulates NF-κB/MMP-9 Signaling to Promote Pancreatic Cancer Progression. Biochem Genet 2024:10.1007/s10528-024-10844-z. [PMID: 38864962 DOI: 10.1007/s10528-024-10844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.
Collapse
Affiliation(s)
- Na-Na Tang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Rong-Bo Xu
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Bo Jiang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Hai-Ling Zhang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Xiao-Song Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Dan-Dan Chen
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Ji-Jun Zhu
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China.
| |
Collapse
|
4
|
Yannone SM, Tuteja V, Goleva O, Leung DYM, Stotland A, Keoseyan AJ, Hendricks NG, Van Eyk JE, Kreimer S. Blood to Biomarker Quantitation in Under One Hour with Rapid Proteomics using a Hyperthermoacidic Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596979. [PMID: 38853916 PMCID: PMC11160709 DOI: 10.1101/2024.06.01.596979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Multi-step multi-hour tryptic proteolysis has limited the utility of bottom-up proteomics for cases that require immediate quantitative information. The recently available hyperthermoacidic (HTA) protease "Krakatoa" digests samples in a single 5 to 30-minute step at pH 3 and >80 °C; conditions that disrupt most cells and tissues, denature proteins, and block disulfide reformation. The combination of quick single-step sample preparation with high throughput dual trapping column single analytical column (DTSC) liquid chromatography-mass spectrometry (LC-MS) achieves "Rapid Proteomics" in which the time from sample collection to actionable data is less than 1 hour. The presented development and systematic evaluation of this methodology found reproducible quantitation of over 160 proteins from just 1 microliter of whole blood. Furthermore, the preference of the HTA-protease for intact proteins over peptides allows for sensitive targeted quantitation of the Angiotensin I and II bioactive peptides in under half an hour. With these methods we analyzed serum and plasma from 53 individuals and quantified Angiotensin and proteins that were not detected with trypsin. This assessment of Rapid Proteomics suggests that concentration of circulating protein and peptide biomarkers could be measured in almost real-time by LC-MS. TOC Figure Rapid proteomics enables near real-time monitoring of circulating blood biomarkers. One microliter of blood is collected every 8 minutes, digested for 20 minutes, and then analyzed by targeted mass spectrometry for 8 minutes. This results in a 30-minute delay with datapoints every 8 minutes.
Collapse
|
5
|
Chen Z, Miao P, Lin H, Lu Y. AHNAK2 Promotes the Progression of Pancreatic Ductal Adenocarcinoma by Maintaining the Stability of c-MET. Cancer Manag Res 2024; 16:431-444. [PMID: 38751848 PMCID: PMC11095252 DOI: 10.2147/cmar.s451486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and rapidly progresses. The overall response rate of PDAC to current treatment methods is still unsatisfactory. Thus, identifying novel targets and clarifying the underlying mechanisms associated with PDAC progression may potentially offer additional treatment strategies. AHNAK2 is aberrantly expressed in a variety of tumors and exerts pro-tumorigenic effects. However, the biological role of AHNAK2 in PDAC remains poorly understood. Methods The expression of AHNAK2 in PDAC and paired non-tumor tissues was detected by immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). Lentivirus knockdown was performed to investigate the impact of AHNAK2 on the biological function of pancreatic cancer cells. The subcutaneous cell-derived xenograft (CDX) model and the KPC spontaneous mouse model with AHNAK2 silencing were used to observe the effects of AHNAK2 on tumor growth and prognosis. The expression of c-MET at protein level in response to HGF treatment was assessed using western blot. Results Our results demonstrated that AHNAK2 was highly expressed in PDAC clinical samples and associated with poor prognosis. Knockdown of AHNAK2 significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells. AHNAK2 knockdown or knockout resulted in tumor growth suppression and prolonged survival in mice with PDAC. In addition, AHNAK2 and c-MET expression levels showed a significant positive correlation at the post-transcriptional level. Mechanistically, AHNAK2 promoted tumor progression by preventing c-MET degradation and persistently activating the HGF/c-MET signaling pathway. Conclusion Overall, our study revealed that AHNAK2 plays an important role in PDAC progression by modulating the c-MET signaling pathway, and targeting AHNAK2 may be an effective therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Zhaohui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, People’s Republic of China
| | - Pengbiao Miao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Hongcao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, People’s Republic of China
| | - Yanan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Zhou X, Cai X, Jing F, Li X, Zhang J, Zhang H, Li T. Genomic alterations in oral multiple primary cancers. Int J Oral Sci 2024; 16:13. [PMID: 38368361 PMCID: PMC10874441 DOI: 10.1038/s41368-023-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 02/19/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the predominant type of oral cancer, while some patients may develop oral multiple primary cancers (MPCs) with unclear etiology. This study aimed to investigate the clinicopathological characteristics and genomic alterations of oral MPCs. Clinicopathological data from patients with oral single primary carcinoma (SPC, n = 202) and oral MPCs (n = 34) were collected and compared. Copy number alteration (CNA) analysis was conducted to identify chromosomal-instability differences among oral MPCs, recurrent OSCC cases, and OSCC patients with lymph node metastasis. Whole-exome sequencing was employed to identify potential unique gene mutations in oral MPCs patients. Additionally, CNA and phylogenetic tree analyses were used to gain preliminary insights into the molecular characteristics of different primary tumors within individual patients. Our findings revealed that, in contrast to oral SPC, females predominated the oral MPCs (70.59%), while smoking and alcohol use were not frequent in MPCs. Moreover, long-term survival outcomes were poorer in oral MPCs. From a CNA perspective, no significant differences were observed between oral MPCs patients and those with recurrence and lymph node metastasis. In addition to commonly mutated genes such as CASP8, TP53 and MUC16, in oral MPCs we also detected relatively rare mutations, such as HS3ST6 and RFPL4A. Furthermore, this study also demonstrated that most MPCs patients exhibited similarities in certain genomic regions within individuals, and distinct differences of the similarity degree were observed between synchronous and metachronous oral MPCs.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Heyu Zhang
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China.
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China.
| |
Collapse
|
7
|
Zhang S, Cai Z, Li H. AHNAKs roles in physiology and malignant tumors. Front Oncol 2023; 13:1258951. [PMID: 38033502 PMCID: PMC10682155 DOI: 10.3389/fonc.2023.1258951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The AHNAK family currently consists of two members, namely AHNAK and AHNAK2, both of which have a molecular weight exceeding 600 kDa. Homologous sequences account for approximately 90% of their composition, indicating a certain degree of similarity in terms of molecular structure and biological functions. AHNAK family members are involved in the regulation of various biological functions, such as calcium channel modulation and membrane repair. Furthermore, with advancements in biological and bioinformatics technologies, research on the relationship between the AHNAK family and tumors has rapidly increased in recent years, and its regulatory role in tumor progression has gradually been discovered. This article briefly describes the physiological functions of the AHNAK family, and reviews and analyzes the expression and molecular regulatory mechanisms of the AHNAK family in malignant tumors using Pubmed and TCGA databases. In summary, AHNAK participates in various physiological and pathological processes in the human body. In multiple types of cancers, abnormal expression of AHNAK and AHNAK2 is associated with prognosis, and they play a key regulatory role in tumor progression by activating signaling pathways such as ERK, MAPK, Wnt, and MEK, as well as promoting epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Shusen Zhang
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai, China
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhigang Cai
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, China
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Li
- Department of surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| |
Collapse
|
8
|
Sales LP, Hounkpe BW, Perez MO, Caparbo VF, Domiciano DS, Borba EF, Schett G, Figueiredo CP, Pereira RMR. Transcriptomic characterization of classical monocytes highlights the involvement of immuno-inflammation in bone erosion in Rheumatoid Arthritis. Front Immunol 2023; 14:1251034. [PMID: 37868981 PMCID: PMC10588645 DOI: 10.3389/fimmu.2023.1251034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Evidence-based data suggest that under inflammatory conditions, classical monocytes are the main source of osteoclasts and might be involved in bone erosion pathophysiology. Here, we analyze the transcriptomic profile of classical monocytes in erosive and non-erosive rheumatoid arthritis patients in order to better understand their contribution to bone erosion. Methods Thirty-nine premenopausal RA patients were consecutively enrolled and divided into two groups based on the presence of bone erosions on hand joints. Classical monocytes were isolated from peripheral blood through negative selection, and RNA-seq was performed using a poly-A enrichment kit and Illumina® platform. Classical monocytes transcriptome from healthy age-matched women were also included to identify differentially expressed genes (DEGs). Therefore, gene sets analysis was performed to identify the enriched biological pathways. Results RNA-seq analysis resulted in the identification of 1,140 DEGs of which 89 were up-regulated and 1,051 down-regulated in RA patients with bone erosion compared to those without bone erosions. Among up-regulated genes, there was a highlighted expression of IL18RAP and KLF14 related to the production of pro-inflammatory cytokines, innate and adaptive immune response. Genes related to collagen metabolism (LARP6) and bone formation process (PAPPA) were down-regulated in RA patients with erosions. Enriched pathways in patients with erosions were associated with greater activation of immune activation, and inflammation. Interestingly, pathways associated with osteoblast differentiation and regulation of Wnt signaling were less activated in RA patients with erosions. Conclusion These findings suggest that alterations in expression of monocyte genes related to the inflammatory process and impairment of bone formation might have an important role in the pathophysiology of bone erosions in RA patients.
Collapse
Affiliation(s)
- Lucas Peixoto Sales
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bidossessi Wilfried Hounkpe
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Ortega Perez
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Valéria Falco Caparbo
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Souza Domiciano
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Ferreira Borba
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Camille Pinto Figueiredo
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Rodrigues Pereira
- Rheumatology Division, Bone Metabolism Laboratory, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Shiota Sato Y, Elbadawy M, Suzuki K, Tsunedomi R, Nagano H, Ishihara Y, Yamamoto H, Azakami D, Uchide T, Fukushima R, Tanaka R, Yoshida T, Mori T, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Aboubakr M, El-Asrag ME, Usui T, Sasaki K. Derivation of a new model of lung adenocarcinoma using canine lung cancer organoids for translational research in pulmonary medicine. Biomed Pharmacother 2023; 165:115079. [PMID: 37413906 DOI: 10.1016/j.biopha.2023.115079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Canine primary lung cancer (cPLC) is a rare malignant tumor in dogs, and exhibits poor prognosis. Effective therapeutic drugs against cPLC have not been established yet. Also, cPLC resembles human lung cancer in histopathological characteristics and gene expression profiles and thus could be an important research model for this disease. Three-dimensional organoid culture is known to recapitulate the tissue dynamics in vivo. We, therefore, tried to generate cPLC organoids (cPLCO) for analyzing the profiles of cPLC. After samples from cPLC and the corresponding normal lung tissue were collected, cPLCO were successfully generated, which recapitulated the tissue architecture of cPLC, expressed lung adenocarcinoma marker (TTF1), and exhibited tumorigenesis in vivo. The sensitivity of cPLCO to anti-cancer drugs was different among strains. RNA-sequencing analysis showed significantly upregulated 11 genes in cPLCO compared with canine normal lung organoids (cNLO). Moreover, cPLCO were enriched with the MEK-signaling pathway compared with cNLO. The MEK inhibitor, trametinib decreased the viability of several strains of cPLCO and inhibited the growth of cPLC xenografts. Collectively, our established cPLCO model might be a useful tool for identifying novel biomarkers for cPLC and a new research model for dog and human lung cancer.
Collapse
Affiliation(s)
- Yomogi Shiota Sato
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Emergency Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tomohiko Yoshida
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takuya Mori
- Kinki Animal Medical Study Center, 3-15-27, Hishie, Osaka 578-0984, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Mohamed Aboubakr
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Mohamed E El-Asrag
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
10
|
Soltysova A, Dvorska D, Kajabova VH, Pecimonova M, Cepcekova K, Ficek A, Demkova L, Buocikova V, Babal P, Juras I, Janikova K, Kasubova I, Samec M, Brany D, Lyskova D, Valaskova J, Dankova Z, Smolkova B, Furdova A. Uncovering accurate prognostic markers for high-risk uveal melanoma through DNA methylation profiling. Clin Transl Med 2023; 13:e1317. [PMID: 37478301 PMCID: PMC10361544 DOI: 10.1002/ctm2.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/23/2023] Open
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Viera Horvathova Kajabova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Pecimonova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Klaudia Cepcekova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lucia Demkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Katarina Janikova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Darina Lyskova
- Department of Ophthalmology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jela Valaskova
- Department of Ophthalmology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Furdova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
11
|
Chen T, Fan X, Li G, Meng Y. Multi-omics data integration reveals the molecular network of dysregulation IQGAP2-mTOR promotes cell proliferation. Hum Cell 2023:10.1007/s13577-023-00912-8. [PMID: 37154877 DOI: 10.1007/s13577-023-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
IQGAP2 as a tumor suppressor gene can influence cell proliferation in multiple tumor cell lines. However, the regulation network of cell proliferation resulting solely from the deficiency of IQGAP2 in cells was still unclear. Here, we integrated transcriptome, proteome, and phosphoproteome analyses to investigate the regulatory network of cell proliferation in IQGAP2 knockdown HaCaT and HEK293 cells. Our findings revealed that the dysregulation of the IQGAP2-mTOR molecular network led to increased cell proliferation. We demonstrated that IQGAP2 knockdown enhanced the phosphorylation levels of AKT and S6K, leading to increased cell proliferation. Additionally, we found that AKT and mTOR inhibitors partially rescued abnormal cell proliferation by reducing hyperphosphorylation. Our data suggest a potential connection between the mTOR signaling pathway and aberrant cell proliferation in IQGAP2 knockdown cells. These findings offer a new therapeutic strategy for patients with IQGAP2 deficiency.
Collapse
Affiliation(s)
- Tao Chen
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China
| | - Guibin Li
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China
| | - Yuhuan Meng
- Guangzhou KingMed Transformative Medicine Institute Co. Ltd., No. 10 Luoxuan 3Rd Road, Guangzhou International Biotech Island, Guangzhou, China.
- Guangzhou KingMed Diagnostics Group Co. Ltd., Guangzhou, China.
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Park H, Imoto S, Miyano S. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification. J Comput Biol 2023; 30:223-243. [PMID: 36450117 DOI: 10.1089/cmb.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The complex mechanisms of diseases involve the disturbance of the molecular network, rather than disorder in a single gene, implying that single gene-based analysis is insufficient to understand these mechanisms. Gene regulatory networks (GRNs) have attracted a lot of interest and various approaches have been developed for their statistical inference and gene network-based analysis. Although various computational methods have been developed, relatively little attention has been paid to incorporation of biological knowledge into the computational approaches. Furthermore, existing studies on network-based analysis perform prediction/classification of status of cell lines based on preconstructed GRNs, implying that we cannot extract prediction/classification-specific gene networks, leading to difficulty in interpretation of biological mechanisms and marker identification related to the status of cancer cell lines. We developed a novel strategy to build a GRN-based classifier, called a GRN-classifier. The proposed GRN-classifier estimates GRNs and classifies cell lines simultaneously, where the gene network is estimated to minimize error in gene network estimation and the negative log-likelihood for classifying cell lines. Thus, we can identify biological status-specific gene regulatory systems, enabling us to achieve biologically reliable interpretation of the classification. We also propose an algorithm to implement the GRN-classifier based on coordinate descent update. Monte Carlo simulations were conducted to examine performance of the GRN-classifier. Results: Our strategy provides effective results in feature selection in the classification model and edge selection in gene network estimation. The GRN-classifier also shows outstanding classification accuracy. We apply the GRN-classifier to classify cancer cell lines into anticancer drug-related status, that is, 5-fluorouracil (5-FU)-sensitive/resistant and 5-FU target/nontarget cancer cell lines. We then identified 5-FU markers based on 5-FU-related status classification-specific gene networks. The mechanisms of the identified markers were verified through literature survey. Our results suggest that the molecular interplay between MYOF and AHNAK2 may play a crucial role in drug resistance and can provide information on the chemotherapy efficiency of 5-FU. It is also suggested that suppression of the identified 5-FU markers, including MYOF/AHNAK2 and AKR1C1/AKR1C3 may improve 5-FU resistance of cancer cell lines.
Collapse
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan.,Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Song X, Zhang L, Du X, Zheng Y, Jia T, Zhou T, Che D, Geng S. Neuroblast Differentiation-Associated Protein Derived Polypeptides: AHNAK(5758-5775) Induces Inflammation by Activating Mast Cells via ST2. Immunol Invest 2023; 52:178-193. [PMID: 36511894 DOI: 10.1080/08820139.2022.2151368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease. Mast cells are significantly increased and activated in psoriatic lesions and are involved in psoriatic inflammation. Some endogenous substances can interact with the surface receptors of mast cells and initiate the release of downstream cytokines that participate in inflammatory reactions. Neuroblast differentiation-associated protein (AHNAK) is mainly expressed in the skin, esophagus, kidney, and other organs and participates in various biological processes in the human body. AHNAK and its derived peptides have been reported to be involved in the activation of mast cells and other immune processes. This study aimed to investigate whether AHNAK (5758-5775), a neuroblast differentiation-associated protein-derived polypeptide, could be considered a new endogenous substance in psoriasis patients, which activates mast cells and induces the skin inflammatory response contributing to psoriasis. Wild-type mice were treated with AHNAK(5758-5775) to observe the infiltration of inflammatory cells in the skin and cytokine release in vivo. The release of inflammatory mediators by mouse primary mast cells and the laboratory of allergic disease 2 (LAD2) human mast cells was measured in vitro. Molecular docking analysis, molecular dynamics simulation, and siRNA transfection were used to identify the receptor of AHNAK(5758-5775). AHNAK(5758-5775) could cause skin inflammation and cytokine release in wild-type mice and activated mast cells in vitro. Moreover, suppression of tumorigenicity 2 (ST2) might be a key receptor mediating AHNAK(5758-5775)'s effect on mast cells and cytokine release. We propose a novel polypeptide, AHNAK(5758-5775), which induces an inflammatory reaction and participates in the occurrence and development of psoriasis by activating mast cells.
Collapse
Affiliation(s)
- Xiangjin Song
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xueshan Du
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Yi Zheng
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Tao Jia
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
14
|
Komina S, Petrusevska G, Jovanovic R, Kunovska SK, Stavridis S, Dohcev S, Saidi S, Topuzovska S, Topuzovska S. AHNAK2 Urinary Protein Expression as Potential Biomarker for Bladder Cancer Detection: A Pilot Study. Turk J Urol 2022; 48:423-430. [PMID: 36416332 PMCID: PMC9797797 DOI: 10.5152/tud.2022.22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to measure the AHNAK2 urinary levels in bladder cancer patients. MATERIAL AND METHODS This prospective case-control study enrolled 67 participants between January and March 2019 and were categorized into bladder cancer group (n=37), with histologically proven bladder can cer, and control group (n=30), with histologically verified benign lesions or with no bladder cancer indica tion during follow-up. Urine samples of 15 mL were collected in the mid-morning before cystoscopy/surger y and an enzyme-linked immunosorbent assay was performed as per the manufacturer's protocol. Bladder malignancies were classified according to the World Health Organization Tumor Classification. Group's associations were evaluated with the Student t-test, Spearman's rank correlation, and Mann-Whitney U test, while receiver operating curve was plotted for assessing the test's performance. RESULTS Mean age of the bladder cancer group was 66.41 years (standard deviation=10.04, range=43-82 years) and the control group was 59.67 years (standard deviation=10.44, range=38-77 years). All bladder cancers were of the urothelial histotype, with the following pT distribution: pTa/papillary urothelial neoplasm of low malignant potential (n=19; 28.4%), Primary tumor (pT) in situ (n=4; 6%), pT1 (n=7; 10.4%), and pT≥2 (n=7; 10.48%). Mean AHNAK2 levels were higher in bladder cancer patients 49.08 pg/mL (standard deviation=114.91) compared to controls 5.28 pg/mL (standard devia tion=6.65), P < .05). Significant differences were noted between non-invasive bladder cancer (n=23; mean=7.14 pg/mL; standard deviation=7.26) and invasive bladder cancer (n=14; mean=117.99 pg/mL; standard deviation=168.08) and between non-muscle invasive bladder cancer (mean=23.19 pg/mL; standard deviation=66.93) and muscle-invasive bladder cancer (mean=160.05 pg/mL; standard devia tion=199.65) (P < .001). The result of the assays was given as follows: sensitivity: 64.19%, specificity: 66.67%, positive predictive value: 22.07%, negative predictive value: 92.37%, area under curve: 0.695, and 95% CI: 0.57-0.82. CONCLUSION AHNAK2 protein could be used as bladder cancer surveillance biomarker. The inclusion of AHNAK2 levels in stratification nomograms might reduce the number of unnecessary cystoscopies.
Collapse
Affiliation(s)
- Selim Komina
- Ss. Cyril and Methodious University, Faculty of Medicine, Institute of Pathology, Skopje, North Macedonia,Corresponding author:Selim KominaE-mail:
| | - Gordana Petrusevska
- Ss. Cyril and Methodious University, Faculty of Medicine, Institute of Pathology, Skopje, North Macedonia
| | - Rubens Jovanovic
- Ss. Cyril and Methodious University, Faculty of Medicine, Institute of Pathology, Skopje, North Macedonia
| | | | - Sotir Stavridis
- Ss. Cyril and Methodious University, Faculty of Medicine, University Urology Clinic, Skopje, North Macedonia
| | - Saso Dohcev
- Ss. Cyril and Methodious University, Faculty of Medicine, University Urology Clinic, Skopje, North Macedonia
| | - Skender Saidi
- Ss. Cyril and Methodious University, Faculty of Medicine, University Urology Clinic, Skopje, North Macedonia
| | - Sonja Topuzovska
- Ss. Cyril and Methodious University, Faculty of Medicine, Institute of Medical and Experimental Biochemistry, Skopje, North Macedonia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Neville MC, Webb PG, Baumgartner HK, Bitler BG. Claudin-4 localization in epithelial ovarian cancer. Heliyon 2022; 8:e10862. [PMID: 36237976 PMCID: PMC9552118 DOI: 10.1016/j.heliyon.2022.e10862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Claudin-4, a protein with the structure of classic claudins most often found in cell-cell junctions, is frequently overexpressed in epithelial cancers where its localization has not been studied. In this study we aimed to find out where this membrane protein is localized in an ovarian tumor model, OVCAR3 cells, that express high levels of the protein. Immunohistochemical studies showed claudin-4 staining in a perinuclear region, at most plasma membranes and in cytoplasmic puncta. Native claudin-4 did not overlap with phosphorylated claudin-4, which was partially located in focal adhesions. Using claudin-4 BioID technology we confirmed that large amounts of claudin-4 are localized to the Golgi compartment, including in dispersed Golgi in cells where claudin-4 is partially knocked down and in dividing cells. Claudin-4 appears to be present in the vicinity of several types of cell-cell junctions, but there is no evidence that it forms tight junctions in these tumor cells. Both claudin-4, the Golgi marker GM130, and the plasma membrane receptor Notch2 were found in dispersed Golgi in dividing cells. This definition of the cellular architecture of claudin-4 should provide a framework for better understanding of the function of claudin-4 in tumor cells and its molecular interactions.
Collapse
Affiliation(s)
- Margaret C. Neville
- Departments of Obstetrics and Gynecology and Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, 80845, USA
- Corresponding author.
| | - Patricia G. Webb
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80845, USA
| | - Heidi K. Baumgartner
- University of Colorado Anschutz Medical Campus, 2700 E. 19th Ave., Aurora, CO, 80045, USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Denver Anschutz Medical Campus, Mail Stop 8613, 12700 E. 19 Ave., Aurora, CO, 80045, USA
| |
Collapse
|