1
|
Zhang J, Liu J, Yue Y, Wang L, He Q, Xu S, Li J, Liao Y, Chen Y, Wang S, Xie Y, Zhang B, Bian Y, Dimitrov DS, Yuan Y, Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J Exp Clin Cancer Res 2024; 43:173. [PMID: 38898487 PMCID: PMC11188579 DOI: 10.1186/s13046-024-03099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Shuyi Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yunji Liao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | | | - Yueqing Xie
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China.
| |
Collapse
|
2
|
Vosooghi R, Motavalizadehkakhky A, Mansouri A, Mehrzad J, Homayouni M. Investigating the effect of hesperetin on estrogen receptor alpha (ERα) expression, phosphorylation and activity in MCF-7 cells. Gene 2024; 911:148357. [PMID: 38462023 DOI: 10.1016/j.gene.2024.148357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE The most common malignancy among women worldwide is breast cancer. The estrogen receptor plays a vital role in this cancer. One of the most well-known mechanisms that affects the activity of this receptor is its phosphorylation by protein kinase pathways. Hesperetin, a flavonoid abundant in citrus species such as lemons, grapefruits, and oranges, is the aglycone form of hesperidin. It has undergone thorough evaluation for its potential anti-cancer properties, particularly in the context of breast cancer. Studies have shown that hesperetin has an effect on intracellular kinase pathways. The aim of this study was to investigate the effect of hesperetin on the expression, phosphorylation and activity of estrogen receptor alpha (ERα) in MCF-7 breast cancer cell line. STUDY DESIGN AND METHODS MCF-7 cells were cultured in RPMI-1640 phenol red-free medium supplemented with charcoal-stripped FBS and treated with hesperetin. The MTT method was used to evaluate cell survival. The levels of the ERα protein and its phosphorylated form (Ser118) were determined via western blotting. A luciferase reporter vector was used to evaluate ERE activity. RESULTS The results of this study indicated that hesperetin reduced the survival of MCF-7 cells in a dose-dependent manner. The expression and phosphorylation (at Ser118) of the ERα significantly increased and decreased, respectively, in the groups treated with hesperetin. Hesperetin increased the activity of the ERα in the absence of E2, although these differences were not statistically significant. Conversely, in the presence of E2, hesperetin caused a significant decrease in receptor activity. CONCLUSION Based on the results of this study, it can be concluded that hesperetin has a significant effect on ERα expression, phosphorylation and activity.
Collapse
Affiliation(s)
- Ramin Vosooghi
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran; Advanced Research Center for Chemistry, Biochemistry and Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran; Advanced Research Center for Chemistry, Biochemistry and Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Masood Homayouni
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Zamanian MY, Golmohammadi M, Nili-Ahmadabadi A, Alameri AA, Al-Hassan M, Alshahrani SH, Hasan MS, Ramírez-Coronel AA, Qasim QA, Heidari M, Verma A. Targeting autophagy with tamoxifen in breast cancer: From molecular mechanisms to targeted therapy. Fundam Clin Pharmacol 2023; 37:1092-1108. [PMID: 37402635 DOI: 10.1111/fcp.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | | | - Mohammed Sami Hasan
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- University of Palermo, Buenos Aires, Argentina
- Research Group in Educational Statistics, National University of Education, Azogues, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagari, India
| |
Collapse
|
4
|
Beeraka NM, Zhang J, Mandal S, Vikram P. R. H, Liu J, B. M. N, Zhao D, Vishwanath P, B. M. G, Fan R. Screening fructosamine-3-kinase (FN3K) inhibitors, a deglycating enzyme of oncogenic Nrf2: Human FN3K homology modelling, docking and molecular dynamics simulations. PLoS One 2023; 18:e0283705. [PMID: 37910519 PMCID: PMC10619859 DOI: 10.1371/journal.pone.0283705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/14/2023] [Indexed: 11/03/2023] Open
Abstract
Fructosamine-3-kinase (FN3K) is involved in the deglycation of Nrf2, a significant regulator of oxidative stress in cancer cells. However, the intricate functional aspects of FN3K and Nrf2 in breast cancers have not been explored vividly. The objectives of this study are to design the human FN3K protein using homology modeling followed by the screening of several anticancer molecules and examining their efficacy to modulate FN3K activity, Nrf2-mediated antioxidant signalling. Methods pertinent to homology modeling, virtual screening, molecular docking, molecular dynamics simulations, assessment of ADME properties, cytotoxicity assays for anticancer molecules of natural/synthetic origin in breast cancer cells (BT-474, T-47D), and Western blotting were used in this study. The screened anticancer molecules including kinase inhibitors of natural and synthetic origin interacted with the 3-dimensional structure of the catalytic domain in human FN3K protein designed through homology modeling by significant CDOCKER interaction energies. Subsequently, gefitinib, sorafenib, neratinib, tamoxifen citrate, and cyclosporine A enhanced the expression of FN3K in BT-474 cell lines with simultaneous alteration in Nrf2-driven antioxidant signalling. Oxaliplatin significantly downregulated FN3K expression and modulated Nrf2-driven antioxidant signalling when compared to cisplatin and other anticancer drugs. Hence, the study concluded the potential implications of existing anticancer drugs to modulate FN3K activity in breast cancers.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram P. R.
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Namitha B. M.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Prashanth Vishwanath
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Gurupadayya B. M.
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wan H, Yang X, Sang G, Ruan Z, Ling Z, Zhang M, Liu C, Hu X, Guo T, He J, Liu D, Pei J. CDKN2A was a cuproptosis-related gene in regulating chemotherapy resistance by the MAGE-A family in breast cancer: based on artificial intelligence (AI)-constructed pan-cancer risk model. Aging (Albany NY) 2023; 15:11244-11267. [PMID: 37857018 PMCID: PMC10637804 DOI: 10.18632/aging.205125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Before the discovery of cuproptosis, copper-loaded nanoparticle is a wildly applied strategy for enhancing the tumor-cell-killing effect of chemotherapy. Although copper(ii)-related researches are wide, details of cuproptosis-related bioprocess in pan-cancer are not clear yet now, especially for prognosis and drug sensitivity prediction yet now. METHODS In this study, VOSviewer is used for the literature review, and R4.2.0 is used for data analysis. Public data are collected from TCGA and GEO, local breast cancer cohort is collected to verify the expression level of CDKN2A. RESULTS 7036 published articles exhibited a time-dependent linear relationship (R=0.9781, p<0.0001), and breast cancer (33.4%) is the most researched topic. Cuproptosis-related-genes (CRGs)-based unsupervised clustering divides pan-cancer subgroups into four groups (CRG subgroup) with differences in prognosis and tumor immunity. 44 tumor-driver-genes (TDGs)-based prediction model of drug sensitivity and prognosis is constructed by artificial intelligence (AI). Based on TDGs and clinical features, a nomogram is (C- index: 0.7, p= 6.958e- 12) constructed to predict the prognosis of breast cancer. Importance analysis identifies CDKN2A has a pivotal role in AI modeling, whose higher expression indicates worse prognosis in breast cancer. Furthermore, inhibition of CDKN2A down-regulates decreases Snail1, Twist1, Zeb1, vimentin and MMP9, while E-cadherin is increased. Besides, inhibition of CDKN2A also decreases the expression of MEGEA4, phosphorylated STAT3, PD-L1, and caspase3, while cleaved-caspase3 is increased. Finally, we find down-regulation of CDKN2A or MAGEA inhibits cell migration and wound healing, respectively. CONCLUSIONS AI identified CRG subgroups in pan-cancer based on CRGs-related TDGs, and 44-gene-based AI modeling is a novel tool to identify chemotherapy sensitivity in breast cancer, in which CDKN2A/MAGEA4 pathway played the most important role.
Collapse
Affiliation(s)
- Hong Wan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Xiaowei Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guopeng Sang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhifan Ruan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zichen Ling
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyang Hu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Juntong He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Defeng Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jing Pei
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. SCIENCE ADVANCES 2023; 9:eadd3685. [PMID: 37172090 PMCID: PMC10181187 DOI: 10.1126/sciadv.add3685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In breast cancer, resistance to endocrine therapies that target estrogen receptor α (ERα), such as tamoxifen and fulvestrant, remains a major clinical problem. Whether and how ERα+ breast cancers switch from being estrogen-dependent to estrogen-independent remains unclear. With a genome-wide CRISPR-Cas9 knockout screen, we identified previously unknown biomarkers and potential therapeutic targets of endocrine resistance. We demonstrate that high levels of PAICS, an enzyme involved in the de novo biosynthesis of purines, can shift the balance of ERα activity to be more estrogen-independent and tamoxifen-resistant. We find that this may be due to elevated activities of cAMP-activated protein kinase A and mTOR, kinases known to phosphorylate ERα specifically and to stimulate its activity. Genetic or pharmacological targeting of PAICS sensitizes tamoxifen-resistant cells to tamoxifen. Addition of purines renders them more resistant. On the basis of these findings, we propose the combined targeting of PAICS and ERα as a new, effective, and potentially safe therapeutic regimen.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH - 1211 Genève 4, Switzerland
| |
Collapse
|
7
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
8
|
Wu L, Gao J, Zhang Y, Sui B, Wen Y, Wu Q, Liu K, He S, Bo X. A hybrid deep forest-based method for predicting synergistic drug combinations. CELL REPORTS METHODS 2023; 3:100411. [PMID: 36936075 PMCID: PMC10014304 DOI: 10.1016/j.crmeth.2023.100411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Combination therapy is a promising approach in treating multiple complex diseases. However, the large search space of available drug combinations exacerbates challenge for experimental screening. To predict synergistic drug combinations in different cancer cell lines, we propose an improved deep forest-based method, ForSyn, and design two forest types embedded in ForSyn. ForSyn handles imbalanced and high-dimensional data in medium-/small-scale datasets, which are inherent characteristics of drug combination datasets. Compared with 12 state-of-the-art methods, ForSyn ranks first on four metrics for eight datasets with different feature combinations. We conduct a systematic analysis to identify the most appropriate configuration parameters. We validate the predictive value of ForSyn with cell-based experiments on several previously unexplored drug combinations. Finally, a systematic analysis of feature importance is performed on the top contributing features extracted by ForSyn. The resulting key genes may play key roles on corresponding cancers.
Collapse
Affiliation(s)
- Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Jie Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Binsheng Sui
- School of Film, Xiamen University, Xiamen 361005, China
| | - Yuqi Wen
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Qingqiang Wu
- School of Film, Xiamen University, Xiamen 361005, China
| | - Kunhong Liu
- School of Film, Xiamen University, Xiamen 361005, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
9
|
Kalkitoxin: A Potent Suppressor of Distant Breast Cancer Metastasis. Int J Mol Sci 2023; 24:ijms24021207. [PMID: 36674719 PMCID: PMC9863388 DOI: 10.3390/ijms24021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Bone metastasis resulting from advanced breast cancer causes osteolysis and increases mortality in patients. Kalkitoxin (KT), a lipopeptide toxin derived from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), has an anti-metastatic effect on cancer cells. We verified that KT suppressed cancer cell migration and invasion in vitro and in animal models in the present study. We confirmed that KT suppressed osteoclast-soup-derived MDA-MB-231 cell invasion in vitro and induced osteolysis in a mouse model, possibly enhancing/inhibiting metastasis markers. Furthermore, KT inhibits CXCL5 and CXCR2 expression, suppressing the secondary growth of breast cancer cells on the bone, brain, and lungs. The breast-cancer-induced osteolysis in the mouse model further reveals that KT plays a protective role, judging by micro-computed tomography and immunohistochemistry. We report for the first time the novel suppressive effects of KT on cancer cell migration and invasion in vitro and on MDA-MB-231-induced bone loss in vivo. These results suggest that KT may be a potential therapeutic drug for the treatment of breast cancer metastasis.
Collapse
|
10
|
Goldoost S, Zarredar H, Asadi M, Shirvaliloo M, Raeisi M. Expression and promoter methylation of mitogen-activated protein kinase 1 in tumor and marginal cells of breast cancer. Breast Dis 2023; 42:437-445. [PMID: 38143331 DOI: 10.3233/bd-230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
AIM In the present study, we sought to explore potential differences in the expression and promoter methylation of mitogen-activated protein kinase 1 (MAPK1) between tumor and marginal cells of breast cancer lesions. METHODS A total of 50 randomly selected patients with breast cancer (BCa) undergoing needle biopsy were enrolled. Clinical specimens containing both tumor and marginal cells were collected and preserved. After DNA extraction using specific primers, MAPK1 mRNA and promoter methylation were measured with spectrophotometry at 260/280 nm absorption wavelengths. To deliver a comparative analysis, data from The Cancer Genome Atlas (TCGA) program regarding breast cancer (BRCA), were downloaded from Xena Functional Genomics Explorer and separately analyzed. The suitability of MAPK1 expression and promoter methylation as biomarkers for BCa was analyzed with receiver operating characteristic (ROC) curves. RESULTS We found a positive correlation between tumor stage and MAPK1 expression (P-value: 0.029) in BCa. Likewise, MAPK1 expression was significantly associated with lymph node metastasis (P-value: 0.018). There was a significant difference in the expression of MAPK1 mRNA between tumor and marginal cells of BCa and BRCA (P-value < 0.001). However, we did not find any statistically significant difference in MAPK1 promoter methylation between tumor and marginal cells of both BCa and BRCA. With an area under the curve (AUC) of 0.71, the diagnostic accuracy of MAPK1 expression in BCa and BRCA was validated. However, MAPK1 promoter methylation was not found to be a suitable biomarker. CONCLUSION Our findings suggest that while MAPK1 expression, might be a promising biomarker for evaluating oncogenic activity in patients suspected of BCa. We were not able to detect a prognostic/diagnostic role for MAPK1 promoter methylation.
Collapse
Affiliation(s)
- Solmaz Goldoost
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Future Science Group, London, UK
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|