1
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
2
|
Alam MS, Gaida MM, Witzel HR, Otsuka S, Abbasi A, Guerin T, Abdelmaksoud A, Wong N, Cam MC, Kozlov S, Ashwell JD. TNFR1 signaling promotes pancreatic tumor growth by limiting dendritic cell number and function. Cell Rep Med 2024; 5:101696. [PMID: 39178856 PMCID: PMC11528236 DOI: 10.1016/j.xcrm.2024.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one the most intractable cancers, in part due to its highly inflammatory microenvironment and paucity of infiltrating dendritic cells (DCs). Here, we find that genetic ablation or antibody blockade of tumor necrosis factor receptor 1 (TNFR1) enhanced intratumor T cell activation and slowed PDAC growth. While anti-PD-1 checkpoint inhibition alone had little effect, it further enhanced intratumor T cell activation in combination with anti-TNFR1. The major cellular alteration in the tumor microenvironment in the absence of TNFR1 signaling was a large increase in DC number and immunostimulatory phenotype. This may reflect a direct effect on DCs, because TNF induced TNFR1-dependent apoptosis of bone-marrow-derived DCs. The therapeutic response to anti-TNFR1 alone was superior to the combination of DC-activating agonistic anti-CD40 and Flt3 ligand (Flt3L). These observations suggest that targeting TNFR1, perhaps in concert with other strategies that promote DC generation and mobilization, may have therapeutic benefits.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Hagen R Witzel
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Shizuka Otsuka
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aamna Abbasi
- Department of Integrative Immunobiology, Duke University, Durham, NC 27708, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21707, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nathan Wong
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21707, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Kirchner J, Plesca I, Rothe R, Resag A, Löck S, Benešová I, Rupp L, Linge A, Wehner R, Krause M, Schmitz M. Type I conventional dendritic cells and CD8 + T cells predict favorable clinical outcome of head and neck squamous cell carcinoma patients. Front Immunol 2024; 15:1414298. [PMID: 38938577 PMCID: PMC11208331 DOI: 10.3389/fimmu.2024.1414298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide, with human papillomavirus (HPV) infection contributing to cancer development. Conventional therapies achieve only limited efficiency, especially in recurrent or metastatic HNSCC. As the immune landscape decisively impacts the survival of patients and treatment efficacy, this study comprehensively investigated the immunological tumor microenvironment (TME) and its association with patient outcome, with special focus on several dendritic cell (DC) and T lymphocyte subpopulations. Therefore, formalin-fixed paraffin-embedded tumor samples of 56 HNSCC patients, who have undergone resection and adjuvant radiotherapy, were analyzed by multiplex immunohistochemistry focusing on the detailed phenotypic characterization and spatial distribution of DCs, CD8+ T cells, and T-helper cell subsets in different tumor compartments. Immune cell densities and proportions were correlated with clinical characteristics of the whole HNSCC cohort and different HPV- or hypoxia-associated subcohorts. Tumor stroma was highly infiltrated by plasmacytoid DCs and T lymphocytes. Among the T-helper cells and CD8+ T cells, stromal regulatory T cells and intraepithelial exhausted CD8+ T cells expressing programmed cell death protein-1 (PD-1+) and/or lymphocyte-activation gene-3 (LAG-3+) were the predominant phenotypes, indicating an immunosuppressive TME. HPV-associated tumors showed significantly higher infiltration of type I and type II conventional DCs (cDC1, cDC2) as well as several CD8+ T cell phenotypes including exhausted, activated, and proliferating T cells. On the contrary, tumors with hypoxia-associated gene signatures exhibited reduced infiltration for these immune cells. By multivariate Cox regression, immune-related prognostic factors were identified. Patient clusters defined by high infiltration of DCs and T lymphocytes combined with HPV positivity or low hypoxia showed significantly prolonged survival. Thereby, cDC1 and CD8+ T cells emerged as independent prognostic factors for local and distant recurrence. These results might contribute to the implementation of an immune cell infiltration score predicting HNSCC patients' survival and such patient stratification might improve the design of future individualized radiochemo-(immuno)therapies.
Collapse
Affiliation(s)
- Johanna Kirchner
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ioana Plesca
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Rebecca Rothe
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Resag
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iva Benešová
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Luise Rupp
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Hansen FJ, David P, Weber GF. The Multifaceted Functionality of Plasmacytoid Dendritic Cells in Gastrointestinal Cancers: A Potential Therapeutic Target? Cancers (Basel) 2024; 16:2216. [PMID: 38927922 PMCID: PMC11201847 DOI: 10.3390/cancers16122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal (GI) tumors pose a significant global health burden, necessitating the exploration of novel therapeutic approaches. Plasmacytoid dendritic cells (pDCs) play a crucial role in tumor immunity, exhibiting both anti-tumor and pro-tumor effects. This review aims to summarize the role of pDCs in different types of GI tumors and assess their potential as therapeutic targets. In gastric cancer, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, increased infiltration of pDCs was associated with a worse outcome, whereas in esophageal cancer, pancreatic cancer, and colorectal cancer, pDC infiltration improved the outcome. Initial animal studies of gastric cancer and hepatocellular carcinoma showed that pDCs could be a successful therapeutic target. In conclusion, pDCs play a multifaceted role in GI tumors, influencing both anti-tumor immunity and tumor progression. Further research is needed to optimize their clinical application and explore combinatorial approaches.
Collapse
Affiliation(s)
| | - Paul David
- Department of General and Visceral Surgery, Medical Faculty of Friedrich-Alexander-University Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Georg F. Weber
- Department of General and Visceral Surgery, Medical Faculty of Friedrich-Alexander-University Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany;
| |
Collapse
|
5
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Scheuermann S, Kristmann B, Engelmann F, Nuernbergk A, Scheuermann D, Koloseus M, Abed T, Solass W, Seitz CM. Unveiling spatial complexity in solid tumor immune microenvironments through multiplexed imaging. Front Immunol 2024; 15:1383932. [PMID: 38566984 PMCID: PMC10985204 DOI: 10.3389/fimmu.2024.1383932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Deciphering cellular components and the spatial interaction network of the tumor immune microenvironment (TIME) of solid tumors is pivotal for understanding biologically relevant cross-talks and, ultimately, advancing therapies. Multiplexed tissue imaging provides a powerful tool to elucidate spatial complexity in a holistic manner. We established and cross-validated a comprehensive immunophenotyping panel comprising over 121 markers for multiplexed tissue imaging using MACSima™ imaging cyclic staining (MICS) alongside an end-to-end analysis workflow. Applying this panel and workflow to primary cancer tissues, we characterized tumor heterogeneity, investigated potential therapeutical targets, conducted in-depth profiling of cell types and states, sub-phenotyped T cells within the TIME, and scrutinized cellular neighborhoods of diverse T cell subsets. Our findings highlight the advantage of spatial profiling, revealing immunosuppressive molecular signatures of tumor-associated myeloid cells interacting with neighboring exhausted, PD1high T cells in the TIME of hepatocellular carcinoma (HCC). This study establishes a robust framework for spatial exploration of TIMEs in solid tumors and underscores the potency of multiplexed tissue imaging and ultra-deep cell phenotyping in unraveling clinically relevant tumor components.
Collapse
Affiliation(s)
- Sophia Scheuermann
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Tuebingen, Tuebingen, Germany
| | - Beate Kristmann
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Fabienne Engelmann
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Alice Nuernbergk
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - David Scheuermann
- School of Business and Economics, Faculty of Economics and Social Sciences, University of Tuebingen, Tuebingen, Germany
| | - Marie Koloseus
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
| | - Tayeb Abed
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Wiebke Solass
- Institute of Tissue Medicine and Pathology (ITMP), University of Bern, Bern, Switzerland
| | - Christian M. Seitz
- Department of Haematology, Oncology, Gastroenterology, Nephrology, Rheumatology, University Children’s Hospital Tuebingen, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), partner site Tuebingen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Cao Z, Guan M, Cheng C, Wang F, Jing Y, Zhang K, Jiao J, Ruan L, Chen Z. KIF20B and MET, hub genes of DIAPHs, predict poor prognosis and promote pancreatic cancer progression. Pathol Res Pract 2024; 254:155046. [PMID: 38266456 DOI: 10.1016/j.prp.2023.155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of β-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with β-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates β-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.
Collapse
Affiliation(s)
- Zhangqi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingwei Guan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Hilmi M, Delaye M, Muzzolini M, Nicolle R, Cros J, Hammel P, Cardot-Ruffino V, Neuzillet C. The immunological landscape in pancreatic ductal adenocarcinoma and overcoming resistance to immunotherapy. Lancet Gastroenterol Hepatol 2023; 8:1129-1142. [PMID: 37866368 DOI: 10.1016/s2468-1253(23)00207-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic ductal adenocarcinoma is associated with a poor prognosis and there are few treatment options. The development of immunotherapy in pancreatic ductal adenocarcinoma has been difficult, and immune checkpoint inhibitors are only effective in a very small subset of patients. Most obstacles for treatment have been related to intertumoural and intratumoural heterogeneity, the composition of tumour stroma, and crosstalk with cancer cells. Improved molecular characterisation of pancreatic ductal adenocarcinoma and a better understanding of its microenvironment have paved the way for novel immunotherapy strategies, including the identification of predictive biomarkers, the development of rational combinations to optimise effectiveness, and the targeting of new mechanisms. Future immunotherapy strategies should consider individual characteristics to move beyond the traditional immune targets and circumvent the resistance to therapies that have been developed so far.
Collapse
Affiliation(s)
- Marc Hilmi
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France
| | - Matthieu Delaye
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France
| | - Milena Muzzolini
- Digestive Surgery Department, Ambroise Paré Hospital, APHP, Université Versailles Saint-Quentin-Université Paris-Saclay, Boulogne Billancourt, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris, France
| | - Jérôme Cros
- Université Paris Cité, Pathology Department, Beaujon Hospital, FHU MOSAIC, AP-HP, Clichy, France
| | - Pascal Hammel
- Université Paris-Saclay, Department of Digestive and Medical Oncology, Paul-Brousse Hospital (APHP Sud), Villejuif, France
| | | | - Cindy Neuzillet
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France.
| |
Collapse
|
10
|
Li TH, Qin XH, Wang LQ, Qin C, Zhao BB, Cao HT, Yang XY, Wang YY, Li ZR, Zhou XT, Wang WB. Prognostic value and immune infiltration of ARMC10 in pancreatic adenocarcinoma via integrated bioinformatics analyses. Heliyon 2023; 9:e20464. [PMID: 37842592 PMCID: PMC10569960 DOI: 10.1016/j.heliyon.2023.e20464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Background Armadillo repeat-containing 10 (ARMC10) is involved in the progression of multiple types of tumors. Pancreatic adenocarcinoma (PAAD) is a lethal disease with poor survival and prognosis. Methods We acquired the data of ARMC10 in PAAD patients from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets and compared the expression level with normal pancreatic tissues. We evaluated the relevance between ARMC10 expression and clinicopathological factors, immune infiltration degree and prognosis in PAAD. Results High expression of ARMC10 was relevant to T stage, M stage, pathologic stage, histologic grade, residual tumor, primary therapy outcome (P < 0.05) and related to lower Overall-Survival (OS), Disease-Specific Survival (DSS), and Progression-Free Interval (PFI). Gene set enrichment analysis showed that ARMC10 was related to methylation in neural precursor cells (NPC), G alpha (i) signaling events, APC targets, energy metabolism, potassium channels and IL10 synthesis. The expression level of ARMC10 was positively related to the abundance of T helper cells and negatively to that of plasmacytoid dendritic cells (pDCs). Knocking down of ARMC10 could lead to lower proliferation, invasion, migration ability and colony formation rate of PAAD cells in vitro. Conclusions Our research firstly discovered ARMC10 as a novel prognostic biomarker for PAAD patients and played a crucial role in immune regulation in PAAD.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Han Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li-Quan Wang
- Department of Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department of Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
In vivo immunomodulatory activity of fucoidan from brown alga Undaria pinnatifida in sarcoma 180-bearing mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
12
|
Immune Phenotypic Characterization of a TRAIL-Knockout Mouse. Cancers (Basel) 2023; 15:cancers15051475. [PMID: 36900266 PMCID: PMC10000729 DOI: 10.3390/cancers15051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The TNF-superfamily member TRAIL is known to mediate selective apoptosis in tumor cells suggesting this protein as a potential antitumor drug target. However, initial successful pr-clinical results could not be translated into the clinic. Reasons for the ineffectiveness of TRAIL-targeting in tumor therapies could include acquired TRAIL resistance. A tumor cell acquires TRAIL resistance, for example, by upregulation of antiapoptotic proteins. In addition, TRAIL can also influence the immune system and thus, tumor growth. We were able to show in our previous work that TRAIL-/- mice show improved survival in a mouse model of pancreatic carcinoma. Therefore, in this study we aimed to immunologically characterize the TRAIL-/- mice. We observed no significant differences in the distribution of CD3+, CD4+, CD8+ T-cells, Tregs, and central memory CD4+ and CD8+ cells. However, we provide evidence for relevant differences in the distribution of effector memory T-cells and CD8+CD122+ cells but also in dendritic cells. Our findings suggest that T-lymphocytes of TRAIL-/- mice proliferate at a lower rate, and that the administration of recombinant TRAIL significantly increases their proliferation, while regulatory T-cells (Tregs) from TRAIL-/- mice are less suppressive. Regarding the dendritic cells, we found more type-2 conventional dendritic cells (DC2s) in the TRAIL-/- mice. For the first time (to the best of our knowledge), we provide a comprehensive characterization of the immunological landscape of TRAIL-deficient mice. This will establish an experimental basis for future investigations of TRAIL-mediated immunology.
Collapse
|
13
|
Ye L, Shi S, Chen W. Innate immunity in pancreatic cancer: Lineage tracing and function. Front Immunol 2023; 13:1081919. [PMID: 36726981 PMCID: PMC9884680 DOI: 10.3389/fimmu.2022.1081919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Increasingly, patients with gastrointestinal tumors can benefit from immunotherapy, but not patients with pancreatic cancer. While this lack of benefit has been attributed to lower T-cell infiltration in pancreatic cancer, other studies have demonstrated the presence of numerous T cells in pancreatic cancer, suggesting another mechanism for the poor efficacy of immunotherapy. Single-cell RNA sequencing studies on the pancreatic cancer immune microenvironment have demonstrated the predominance of innate immune cells (e.g., macrophages, dendritic cells, mast cells, and innate immune lymphoid cells). Therefore, in-depth research on the source and function of innate immune lymphocytes in pancreatic cancer could guide pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Pancreatic Cancer Institute, Shanghai, China,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Pancreatic Cancer Institute, Shanghai, China,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China,*Correspondence: Wei Chen,
| |
Collapse
|
14
|
Tian C, Yuan H, Lu Y, He H, Li Q, Li S, Yang J, Wang M, Xu R, Liu Q, Xiang M. CARD9 deficiency promotes pancreatic cancer growth by blocking dendritic cell maturation via SLC6A8-mediated creatine transport. Oncoimmunology 2023; 12:2204015. [PMID: 37089447 PMCID: PMC10120541 DOI: 10.1080/2162402x.2023.2204015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Pancreatic cancer (PC) is featured with low survival rate and poor outcomes. Herein, we found that the expression of caspase-recruitment domain-containing protein 9 (CARD9), predominantly expressed in innate immune cells, was positively related to the prognosis of PC patients. CARD9-deficient PC mice exhibited rapider cancer progression and poorer survival rate. CARD9 knockout decreased dendritic cell (DC) maturation and impaired DC ability to activate T cells in vivo and in vitro. Adoptive DC transfer confirmed that the role of CARD9 deficiency in PC relied on DCs. Creatine was identified as the most significant differential metabolite between WT DCs and CARD9-/- DCs wherein it played an essential role in maintaining DC maturation and function. CARD9 deficiency led to decreased creatine levels in DCs by inhibiting the transcription of the creatine-specific transporter, solute carrier family 6 member 8 (SLC6A8). Furtherly, CARD9 deletion blocked p65 activation by abolishing the formation of CARD9-BCL10-MALT1 complex, which prevented the binding between p65 and SLC6A8 promoter. These events decreased the creatine transport into DCs, and led to DC immaturity and impairment in antitumor immunity, consequently promoting PC progression.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Henghui He
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengheng Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruochen Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- CONTACT Ming Xiang Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hang Kong Road 13, Wuhan430000, China
| |
Collapse
|
15
|
Plasmacytoid Dendritic Cells as a Novel Cell-Based Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms231911397. [PMID: 36232698 PMCID: PMC9570010 DOI: 10.3390/ijms231911397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells with a wide range of innate and adaptive immunological functions. They constitute the first line of defence against multiple viral infections and have also been reported to actively participate in antitumor immune responses. The clinical implication of the presence of pDCs in the tumor microenvironment (TME) is still ambiguous, but it is clear that pDCs possess the ability to modulate tumor-specific T cell responses and direct cytotoxic functions. Therapeutic strategies designed to exploit these qualities of pDCs to boost tumor-specific immune responses could represent an attractive alternative compared to conventional therapeutic approaches in the future, and promising antitumor effects have already been reported in phase I/II clinical trials. Here, we review the many roles of pDCs in cancer and present current advances in developing pDC-based immunotherapeutic approaches for treating cancer.
Collapse
|
16
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|