1
|
Biegała Ł, Statkiewicz M, Gajek A, Szymczak-Pajor I, Rusetska N, Śliwińska A, Marczak A, Mikula M, Rogalska A. Molecular mechanisms restoring olaparib efficacy through ATR/CHK1 pathway inhibition in olaparib-resistant BRCA1/2 MUT ovarian cancer models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167574. [PMID: 39557132 DOI: 10.1016/j.bbadis.2024.167574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Resistance to olaparib inevitably develops in ovarian cancer (OC) patients, highlighting the necessity for effective strategies to improve its efficacy. Here, we established a novel olaparib-resistant patient-derived xenograft model of high-grade serous OC with BRCA1/2 mutations and examined the molecular characteristics of acquired resistance and resensitization to olaparib in treatment-naïve tumors in vivo. Olaparib-resistant xenografts were treated with olaparib, ATR inhibitor (ATRi, ceralasertib), CHK1 inhibitor (CHK1i, MK-8776) or their combinations. Proliferation, apoptosis, ATR/CHK1 activity, PARP signaling, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and MDR1 expression, were examined via RT-qPCR, western blot, and immunohistochemistry. Resistant tumors exhibited defects in PARP and ATR/CHK1 signaling, accompanied by altered expression of proteins involved in DDR and EMT. Olaparib rechallenge combined with ATR/CHK1 inhibitors showed promising synergistic effects on tumor growth inhibition. Mechanistically, combined treatments suppressed tumor proliferation without increasing apoptosis or necrosis, while inducing tumor cell vacuolization indicative of cell death. ATRi combined with olaparib induced or augmented downregulation of ATR, CHK1, PARP1, PARG, BRCA1, γH2AX, and PARylated protein expression, while reversing olaparib-induced upregulation of vimentin, BRCA2, and 53BP1. Our collective findings indicate that ATR/CHK1 pathway inhibition restores the olaparib efficacy in resistant BRCA1/2MUT high-grade serous OC, highlighting promising approach for olaparib rechallenge of non-responsive patients. Uncovered mechanisms might improve our understanding of acquisition and overcoming resistance to olaparib in ovarian cancer.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| | - Małgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781 Warsaw, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland.
| | - Natalia Rusetska
- Department of Experimental Immunology, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781 Warsaw, Poland.
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland.
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgena Street, 02-781 Warsaw, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| |
Collapse
|
2
|
Voulgarelis D, Forment JV, Herencia Ropero A, Polychronopoulos D, Cohen-Setton J, Bender A, Serra V, O'Connor MJ, Yates JWT, Bulusu KC. Understanding tumour growth variability in breast cancer xenograft models identifies PARP inhibition resistance biomarkers. NPJ Precis Oncol 2024; 8:266. [PMID: 39558144 PMCID: PMC11574300 DOI: 10.1038/s41698-024-00702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 11/20/2024] Open
Abstract
Understanding the mechanisms of resistance to PARP inhibitors (PARPi) is a clinical priority, especially in breast cancer. We developed a novel mathematical framework accounting for intrinsic resistance to olaparib, identified by fitting the model to tumour growth metrics from breast cancer patient-derived xenograft (PDX) data. Pre-treatment transcriptomic profiles were used with the calculated resistance to identify baseline biomarkers of resistance, including potential combination targets. The model provided both a classification of responses, as well as a continuous description of resistance, allowing for more robust biomarker associations and capturing the observed variability. Thirty-six resistance gene markers were identified, including multiple homologous recombination repair (HRR) pathway genes. High WEE1 expression was also linked to resistance, highlighting an opportunity for combining PARP and WEE1 inhibitors. This framework facilitates a fully automated way of capturing intrinsic resistance, and accounts for the pharmacological response variability captured within PDX studies and hence provides a precision medicine approach.
Collapse
Affiliation(s)
- D Voulgarelis
- AstraZeneca Postdoc Programme, Cambridge, UK
- DMPK Oncology R&D, AstraZeneca, Cambridge, UK
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Herencia Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - J Cohen-Setton
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Bender
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - V Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - M J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK.
| | - J W T Yates
- DMPK Modelling, DMPK, Preclinical Sciences, RTech, GSK, Stevenage, UK
| | - K C Bulusu
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
3
|
Lu J, Liu H, Wang B, Chen C, Bai F, Su X, Duan P. Niraparib plays synergistic antitumor effects with NRT in a mouse ovarian cancer model with HRP. Transl Oncol 2024; 49:102094. [PMID: 39163760 PMCID: PMC11380394 DOI: 10.1016/j.tranon.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE PARPi offers less clinical benefit for HRP patients compared to HRD patients. PARPi has an immunomodulatory function. NRT therapy targets tumor neoantigens without off-target immune toxicity. We explored the synergy between Niraparib and NRT in enhancing antitumor activity in an HRP ovarian cancer mouse model. METHODS In the C57BL/6 mouse ID8 ovarian cancer model, the effect of Niraparib on reshaping TIME was evaluated by immune cell infiltration analysis of transcriptomic data. The antitumor effects of Niraparib, NRT, and their combined use were systematically evaluated. To corroborate alterations in TILs, TAMs, and chemokine profiles within the TIME, we employed immunofluorescence imaging and transcriptome sequencing analysis. RESULTS Niraparib increased the M1-TAMs and activated CD8+ T cells in tumor tissues of C57BL/6 mice with ID8 ovarian cancer. GSEA showed that gene set associated with immature DC and INFα, cytokines and chemokines were significantly enriched in immune feature, KEGG and GO gene sets, meanwhile CCL5, CXCL9 and CXCL10 play dominant roles together. In the animal trials, combined group had a tumor growth delay compared with Niraparib group (P < 0.01) and control group (P < 0.001), and longer survival compared with the single agent group (P<0.01) . CONCLUSIONS Niraparib could exert immune-reshaping effects, then acts synergistic antitumor effects with NRT in HRP ovarian cancer model. Our findings provide new ideas and rationale for combined immunotherapy in HRP ovarian cancer.
Collapse
Affiliation(s)
- Jiefang Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Obstetrics and Gynecology, Lishui People's Hospital, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Lishui College, China
| | - Haiying Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Obstetrics and Gynecology, Lishui People's Hospital, China
| | - Binming Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Chengcheng Chen
- Department of Gastrointestinal Surgery, The Second Afliated Hospital of Wenzhou Medical University, China
| | - Fumao Bai
- Department of clinical laboratory, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, China; Department of Gastrointestinal Surgery, The Second Afliated Hospital of Wenzhou Medical University, China.
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
4
|
Chiappa M, Decio A, Guarrera L, Mengoli I, Karki A, Yemane D, Ghilardi C, Scanziani E, Canesi S, Barbera MC, Craparotta I, Bolis M, Fruscio R, Grasselli C, Ceruti T, Zucchetti M, Patterson JC, Lu RA, Yaffe MB, Ridinger M, Damia G, Guffanti F. Onvansertib treatment overcomes olaparib resistance in high-grade ovarian carcinomas. Cell Death Dis 2024; 15:521. [PMID: 39039067 PMCID: PMC11263393 DOI: 10.1038/s41419-024-06894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Guarrera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Mengoli
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Anju Karki
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Divora Yemane
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Carmen Ghilardi
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Simone Canesi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Maria C Barbera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Chiara Grasselli
- Immuno-Pharmacology Unit, Department of Oncology, Mario Negri Institute for Pharmacological Research (IRCCS), Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Zucchetti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robin A Lu
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Micheal B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya Ridinger
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Giovanna Damia
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Federica Guffanti
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
5
|
Zhang W, Li Q, Yin R. Targeting WEE1 Kinase in Gynecological Malignancies. Drug Des Devel Ther 2024; 18:2449-2460. [PMID: 38915863 PMCID: PMC11195673 DOI: 10.2147/dddt.s462056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
WEE1 kinase is involved in the G2/M cell cycle checkpoint control and DNA damage repair. A functional G2/M checkpoint is crucial for DNA repair in cancer cells with p53 mutations since they lack a functional G1/S checkpoint. Targeted inhibition of WEE1 kinase may cause tumor cell apoptosis, primarily, in the p53-deficient tumor, via bypassing the G2/M checkpoint without properly repairing DNA damage, resulting in genome instability and chromosomal deletion. This review aims to provide a comprehensive overview of the biological role of WEE1 kinase and the potential of WEE1 inhibitor (WEE1i) for treating gynecological malignancies. We conducted a thorough literature search from 2001 to September 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of WEE1i and gynecologic oncology. WEE1i has been shown to inhibit tumor activity and enhance the sensitivity of chemotherapy or radiotherapy in preclinical models, particularly in p53-mutated gynecologic cancer models, although not exclusively. Recently, WEE1i alone or combined with genotoxic agents has confirmed its efficacy and safety in Phase I/II gynecological malignancies clinical trials. Furthermore, it has become increasingly clear that other inhibitors of DNA damage pathways show synthetic lethality with WEE1i, and WEE1 modulates therapeutic immune responses, providing a rationale for the combination of WEE1i and immune checkpoint blockade. In this review, we summarize the biological function of WEE1 kinase, development of WEE1i, and outline the preclinical and clinical data available on the investigation of WEE1i for treating gynecologic malignancies.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Qingli Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Tao L, Xia X, Kong S, Wang T, Fan F, Wang W. Natural pentacyclic triterpenoid from Pristimerin sensitizes p53-deficient tumor to PARP inhibitor by ubiquitination of Chk1. Pharmacol Res 2024; 201:107091. [PMID: 38316371 DOI: 10.1016/j.phrs.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Inhibition of checkpoint kinase 1 (Chk1) has shown to overcome resistance to poly (ADP-ribose) polymerase (PARP) inhibitors and expand the clinical utility of PARP inhibitors in a broad range of human cancers. Pristimerin, a naturally occurring pentacyclic triterpenoid, has been the focus of intensive studies for its anticancer potential. However, it is not yet known whether low dose of pristimerin can be combined with PARP inhibitors by targeting Chk1 signaling pathway. In this study, we investigated the efficacy, safety and molecular mechanisms of the synergistic effect produced by the combination olaparib and pristimerin in TP53-deficient and BRCA-proficient cell models. As a result, an increased expression of Chk1 was correlated with TP53 mutation, and pristimerin preferentially sensitized p53-defective cells to olaparib. The combination of olaparib and pristimerin resulted in a more pronounced abrogation of DNA synthesis and induction of DNA double-strand breaks (DSBs). Moreover, pristimerin disrupted the constitutional levels of Chk1 and DSB repair activities. Mechanistically, pristimerin promoted K48-linked polyubiquitination and proteasomal degradation of Chk1 while not affecting its kinase domain and activity. Importantly, combinatorial therapy led to a higher rate of tumor growth inhibition without apparent hematological toxicities. In addition, pristimerin suppressed olaparib-induced upregulation of Chk1 and enhanced olaparib-induced DSB marker γΗ2ΑΧ in vivo. Taken together, inhibition of Chk1 by pristimerin has been observed to induce DNA repair deficiency, which may expand the application of olaparib in BRCA-proficient cancers harboring TP53 mutations. Thus, pristimerin can be combined for PARP inhibitor-based therapy.
Collapse
Affiliation(s)
- Li Tao
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiangyu Xia
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shujing Kong
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tingye Wang
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233003, China
| | - Weimin Wang
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, China.
| |
Collapse
|
7
|
Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2 MUT ovarian cancer cells. Sci Rep 2023; 13:22659. [PMID: 38114660 PMCID: PMC10730696 DOI: 10.1038/s41598-023-50151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland.
| |
Collapse
|
8
|
Klotz DM, Schwarz FM, Dubrovska A, Schuster K, Theis M, Krüger A, Kutz O, Link T, Wimberger P, Drukewitz S, Buchholz F, Thomale J, Kuhlmann JD. Establishment and Molecular Characterization of an In Vitro Model for PARPi-Resistant Ovarian Cancer. Cancers (Basel) 2023; 15:3774. [PMID: 37568590 PMCID: PMC10417418 DOI: 10.3390/cancers15153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Overcoming PARPi resistance is a high clinical priority. We established and characterized comparative in vitro models of acquired PARPi resistance, derived from either a BRCA1-proficient or BRCA1-deficient isogenic background by long-term exposure to olaparib. While parental cell lines already exhibited a certain level of intrinsic activity of multidrug resistance (MDR) proteins, resulting PARPi-resistant cells from both models further converted toward MDR. In both models, the PARPi-resistant phenotype was shaped by (i) cross-resistance to other PARPis (ii) impaired susceptibility toward the formation of DNA-platinum adducts upon exposure to cisplatin, which could be reverted by the drug efflux inhibitors verapamil or diphenhydramine, and (iii) reduced PARP-trapping activity. However, the signature and activity of ABC-transporter expression and the cross-resistance spectra to other chemotherapeutic drugs considerably diverged between the BRCA1-proficient vs. BRCA1-deficient models. Using dual-fluorescence co-culture experiments, we observed that PARPi-resistant cells had a competitive disadvantage over PARPi-sensitive cells in a drug-free medium. However, they rapidly gained clonal dominance under olaparib selection pressure, which could be mitigated by the MRP1 inhibitor MK-751. Conclusively, we present a well-characterized in vitro model, which could be instrumental in dissecting mechanisms of PARPi resistance from HR-proficient vs. HR-deficient background and in studying clonal dynamics of PARPi-resistant cells in response to experimental drugs, such as novel olaparib-sensitizers.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Franziska Maria Schwarz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Kati Schuster
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mirko Theis
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Krüger
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- UCC Section Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45147 Essen, Germany;
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (D.M.K.); (F.M.S.); (K.S.); (O.K.); (T.L.); (P.W.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.D.); (M.T.); (A.K.); (S.D.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Cordani N, Bianchi T, Ammoni LC, Cortinovis DL, Cazzaniga ME, Lissoni AA, Landoni F, Canova S. An Overview of PARP Resistance in Ovarian Cancer from a Molecular and Clinical Perspective. Int J Mol Sci 2023; 24:11890. [PMID: 37569269 PMCID: PMC10418869 DOI: 10.3390/ijms241511890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC), a primarily high-grade serous carcinoma (HGSOC), is one of the major causes of high death-to-incidence ratios of all gynecological cancers. Cytoreductive surgery and platinum-based chemotherapy represent the main treatments for this aggressive disease. Molecular characterization of HGSOC has revealed that up to 50% of cases have a deficiency in the homologous recombination repair (HRR) system, which makes these tumors sensitive to poly ADP-ribose inhibitors (PARP-is). However, drug resistance often occurs and overcoming it represents a big challenge. A number of strategies are under investigation, with the most promising being combinations of PARP-is with antiangiogenetic agents and immune checkpoint inhibitors. Moreover, new drugs targeting different pathways, including the ATR-CHK1-WEE1, the PI3K-AKT and the RAS/RAF/MEK, are under development both in phase I and II-III clinical trials. Nevertheless, there is still a long way to go, and the next few years promise to be exciting.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
| | - Tommaso Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca Carlofrancesco Ammoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
| | | | - Marina Elena Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Andrea Alberto Lissoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Fabio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (T.B.); (L.C.A.); (M.E.C.); (A.A.L.); (F.L.)
- Clinic of Obstetrics and Gynecology, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Canova
- Medical Oncology Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| |
Collapse
|
10
|
Yang S, Green A, Brown N, Robinson A, Senat M, Testino B, Dinulescu DM, Sridhar S. Sustained delivery of PARP inhibitor Talazoparib for the treatment of BRCA-deficient ovarian cancer. Front Oncol 2023; 13:1175617. [PMID: 37228496 PMCID: PMC10203577 DOI: 10.3389/fonc.2023.1175617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Ovarian cancer has long been known to be the deadliest cancer associated with the female reproductive system. More than 15% of ovarian cancer patients have a defective BRCA-mediated homologous recombination repair pathway that can be therapeutically targeted with PARP inhibitors (PARPi), such as Talazoparib (TLZ). The expansion of TLZ clinical approval beyond breast cancer has been hindered due to the highly potent systemic side effects resembling chemotherapeutics. Here we report the development of a novel TLZ-loaded PLGA implant (InCeT-TLZ) that sustainedly releases TLZ directly into the peritoneal (i.p.) cavity to treat patient-mimicking BRCA-mutated metastatic ovarian cancer (mOC). Methods InCeT-TLZ was fabricated by dissolving TLZ and PLGA in chloroform, followed by extrusion and evaporation. Drug loading and release were confirmed by HPLC. The in vivo therapeutic efficacy of InCeT-TLZ was carried out in a murine Brca2-/-p53R172H/-Pten-/- genetically engineered peritoneally mOC model. Mice with tumors were divided into four groups: PBS i.p. injection, empty implant i.p. implantation, TLZ i.p. injection, and InCeT-TLZ i.p. implantation. Body weight was recorded three times weekly as an indicator of treatment tolerance and efficacy. Mice were sacrificed when the body weight increased by 50% of the initial weight. Results Biodegradable InCeT-TLZ administered intraperitoneally releases 66 μg of TLZ over 25 days. In vivo experimentation shows doubled survival in the InCeT-TLZ treated group compared to control, and no significant signs of toxicity were visible histologically in the surrounding peritoneal organs, indicating that the sustained and local delivery of TLZ greatly maximized therapeutic efficacy and minimized severe clinical side effects. The treated animals eventually developed resistance to PARPi therapy and were sacrificed. To explore treatments to overcome resistance, in vitro studies with TLZ sensitive and resistant ascites-derived murine cell lines were carried out and demonstrated that ATR inhibitor and PI3K inhibitor could be used in combination with the InCeT-TLZ to overcome acquired PARPi resistance. Conclusion Compared to intraperitoneal PARPi injection, the InCeT-TLZ better inhibits tumor growth, delays the ascites formation, and prolongs the overall survival of treated mice, which could be a promising therapy option that benefits thousands of women diagnosed with ovarian cancer.
Collapse
Affiliation(s)
- Shicheng Yang
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Allen Green
- Department of Pathology, Division of Women’s and Perinatal Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Needa Brown
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Alexis Robinson
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
| | - Merline Senat
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
| | - Bryanna Testino
- Department of Pathology, Division of Women’s and Perinatal Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
| | - Daniela M. Dinulescu
- Department of Pathology, Division of Women’s and Perinatal Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Srinivas Sridhar
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Radiation Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Cancer Nanomedicine Co-ops for Undergraduate Research Experience (CaNCURE), Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
11
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. Olaparib-Resistant BRCA2MUT Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival. Cells 2023; 12:cells12071038. [PMID: 37048111 PMCID: PMC10093185 DOI: 10.3390/cells12071038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2MUT PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi.
Collapse
|
12
|
Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Cancers (Basel) 2022; 14:4621. [PMID: 36230543 PMCID: PMC9563432 DOI: 10.3390/cancers14194621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nikola A. Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
- Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
13
|
Roering P, Siddiqui A, Heuser VD, Potdar S, Mikkonen P, Oikkonen J, Li Y, Pikkusaari S, Wennerberg K, Hynninen J, Grenman S, Huhtinen K, Auranen A, Carpén O, Kaipio K. Effects of Wee1 inhibitor adavosertib on patient-derived high-grade serous ovarian cancer cells are multiple and independent of homologous recombination status. Front Oncol 2022; 12:954430. [PMID: 36081565 PMCID: PMC9445195 DOI: 10.3389/fonc.2022.954430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objective A major challenge in the treatment of platinum-resistant high-grade serous ovarian cancer (HGSOC) is lack of effective therapies. Much of ongoing research on drug candidates relies on HGSOC cell lines that are poorly documented. The goal of this study was to screen for effective, state-of-the-art drug candidates using primary HGSOC cells. In addition, our aim was to dissect the inhibitory activities of Wee1 inhibitor adavosertib on primary and conventional HGSOC cell lines. Methods A comprehensive drug sensitivity and resistance testing (DSRT) on 306 drug compounds was performed on three patient-derived genetically unique HGSOC cell lines and two commonly used ovarian cancer cell lines. The effect of adavosertib on the cell lines was tested in several assays, including cell-cycle analysis, apoptosis induction, proliferation, wound healing, DNA damage, and effect on nuclear integrity. Results Several compounds exerted cytotoxic activity toward all cell lines, when tested in both adherent and spheroid conditions. In further cytotoxicity tests, adavosertib exerted the most consistent cytotoxic activity. Adavosertib affected cell-cycle control in patient-derived and conventional HGSOC cells, inducing G2/M accumulation and reducing cyclin B1 levels. It induced apoptosis and inhibited proliferation and migration in all cell lines. Furthermore, the DNA damage marker γH2AX and the number of abnormal cell nuclei were clearly increased following adavosertib treatment. Based on the homologous recombination (HR) signature and functional HR assays of the cell lines, the effects of adavosertib were independent of the cells' HR status. Conclusion Our study indicates that Wee1 inhibitor adavosertib affects several critical functions related to proliferation, cell cycle and division, apoptosis, and invasion. Importantly, the effects are consistent in all tested cell lines, including primary HGSOC cells, and independent of the HR status of the cells. Wee1 inhibition may thus provide treatment opportunities especially for patients, whose cancer has acquired resistance to platinum-based chemotherapy or PARP inhibitors.
Collapse
Affiliation(s)
- Pia Roering
- Institute of Biomedicine and Finnish Cancer Center (FICAN) West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Pia Roering, ; Olli Carpén,
| | - Arafat Siddiqui
- Institute of Biomedicine and Finnish Cancer Center (FICAN) West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Vanina D. Heuser
- Institute of Biomedicine and Finnish Cancer Center (FICAN) West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Swapnil Potdar
- High Throughput Biomedicine Unit, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Piia Mikkonen
- Helsinki Institute of Life Science (HiLIFE), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sanna Pikkusaari
- Institute of Biomedicine and Finnish Cancer Center (FICAN) West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Krister Wennerberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Seija Grenman
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine and Finnish Cancer Center (FICAN) West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annika Auranen
- Department of Obstetrics and Gynecology and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Olli Carpén
- Department of Pathology, Precision Cancer Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Pia Roering, ; Olli Carpén,
| | - Katja Kaipio
- Institute of Biomedicine and Finnish Cancer Center (FICAN) West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|