1
|
Naik A, Thakur N. Epigenetic regulation of TGF-β and vice versa in cancers - A review on recent developments. Biochim Biophys Acta Rev Cancer 2024; 1879:189219. [PMID: 39549878 DOI: 10.1016/j.bbcan.2024.189219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
This review explores the complex relationship between epigenetic mechanisms and Transforming Growth Factor-beta (TGF-β) signalling pathways in the field of cancer research. The study provides an overview of the latest advancements in understanding the crucial functions of epigenetic alterations, such as DNA methylation, histone modifications, and chromatin remodeling, in significantly impacting the TGF-β signalling pathway. The dynamic epigenetic modifications are essential in determining the behaviour of cancer cells, impacting the interactions with the tumor microenvironment, and affecting the overall process of carcinogenesis. Significant attention is given to Breast cancer, Lung cancer, Liver cancer, Prostate cancer, and Pancreatic cancer. Research has revealed intricate regulatory networks in these cancers, involving long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and histone post-translational modifications. These networks are closely connected to TGF-β signalling. Both findings highlight the significant interaction between epigenetic regulation and TGF-β signalling in cancer. They provide valuable insights that can guide the development of new treatment approaches to target both pathways and prevent cancer growth and metastasis.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
2
|
McClelland S, Maxwell PJ, Branco C, Barry ST, Eberlein C, LaBonte MJ. Targeting IL-8 and Its Receptors in Prostate Cancer: Inflammation, Stress Response, and Treatment Resistance. Cancers (Basel) 2024; 16:2797. [PMID: 39199570 PMCID: PMC11352248 DOI: 10.3390/cancers16162797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer's notably "immune-cold" nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.
Collapse
Affiliation(s)
- Shauna McClelland
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Pamela J. Maxwell
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Cristina Branco
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| | - Simon T. Barry
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Cath Eberlein
- Bioscience Early Oncology, AstraZeneca, Cambridge CB2 0AA, UK; (S.T.B.); (C.E.)
| | - Melissa J. LaBonte
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (S.M.); (P.J.M.); (C.B.)
| |
Collapse
|
3
|
Li CY, Wang W, Leung CH, Yang GJ, Chen J. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Mol Cancer 2024; 23:109. [PMID: 38769556 PMCID: PMC11103982 DOI: 10.1186/s12943-024-02011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China.
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Macau, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Goncharov AP, Vashakidze N, Kharaishvili G. Epithelial-Mesenchymal Transition: A Fundamental Cellular and Microenvironmental Process in Benign and Malignant Prostate Pathologies. Biomedicines 2024; 12:418. [PMID: 38398019 PMCID: PMC10886988 DOI: 10.3390/biomedicines12020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial and fundamental mechanism in many cellular processes, beginning with embryogenesis via tissue remodulation and wound healing, and plays a vital role in tumorigenesis and metastasis formation. EMT is a complex process that involves many transcription factors and genes that enable the tumor cell to leave the primary location, invade the basement membrane, and send metastasis to other tissues. Moreover, it may help the tumor avoid the immune system and establish radioresistance and chemoresistance. It may also change the normal microenvironment, thus promoting other key factors for tumor survival, such as hypoxia-induced factor-1 (HIF-1) and promoting neoangiogenesis. In this review, we will focus mainly on the role of EMT in benign prostate disease and especially in the process of establishment of malignant prostate tumors, their invasiveness, and aggressive behavior. We will discuss relevant study methods for EMT evaluation and possible clinical implications. We will also introduce clinical trials conducted according to CONSORT 2010 that try to harness EMT properties in the form of circulating tumor cells to predict aggressive patterns of prostate cancer. This review will provide the most up-to-date information to establish a keen understanding of the cellular and microenvironmental processes for developing novel treatment lines by modifying or blocking the pathways.
Collapse
Affiliation(s)
- Aviv Philip Goncharov
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
| | - Nino Vashakidze
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
- Department of Human Morphology and Pathology, Medical Faculty, David Tvildiani Medical University, Tbilisi 0159, Georgia
| |
Collapse
|
5
|
Yu F, Li L, Gu Y, Wang S, Zhou L, Cheng X, Jiang H, Huang Y, Zhang Y, Qian W, Li X, Liu Z. Lysine demethylase 5C inhibits transcription of prefoldin subunit 5 to activate c-Myc signal transduction and colorectal cancer progression. Mol Med 2024; 30:9. [PMID: 38216914 PMCID: PMC10785505 DOI: 10.1186/s10020-023-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism. METHODS Bioinformatics tools were employed to predict the target genes of KDM5C in CRC. The expression levels of KDM5C and prefoldin subunit 5 (PFDN5) in CRC cells were determined by RT-qPCR and western blot assays. The interaction between KDM5C, H3K4me3, and PFDN5 was validated by chromatin immunoprecipitation. Expression and prognostic values of KDM5C and PFDN5 in CRC were analyzed in a cohort of 72 patients. The function of KDM5C/PFDN5 in c-Myc signal transduction was analyzed by luciferase assay. Silencing of KDM5C and PFDN5 was induced in CRC cell lines to analyze the cell malignant phenotype in vitro and tumorigenic activity in nude mice. RESULTS KDM5C exhibited high expression, while PFDN5 displayed low expression in CRC cells and clinical CRC samples. High KDM5C levels correlated with poor survival and unfavorable clinical presentation, whereas elevated PFDN5 correlated with improved patient outcomes. KDM5C mediated demethylation of H3K4me3 on the PFDN5 promoter, suppressing its transcription and thereby enhancing the transcriptional activity of c-Myc. KDM5C knockdown in CRC cells suppressed cell proliferation, migration and invasion, epithelial-mesenchymal transition, and tumorigenic activity while increasing autophagy and apoptosis rates. However, the malignant behavior of cells was restored by the further silencing of PFDN5. CONCLUSION This study demonstrates that KDM5C inhibits PFDN5 transcription, thereby activating c-Myc signal transduction and promoting CRC progression.
Collapse
Affiliation(s)
- Fulong Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Liang Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Yimei Gu
- Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, People's Republic of China
| | - Song Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Lianbang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Xiaohu Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Heng Jiang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yang Huang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Yingfeng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Wenbao Qian
- Department of Molecular Pathology, Hefei Da'an Medical Laboratory Co., Ltd., Hefei, 230012, Anhui, People's Republic of China
| | - Xianghua Li
- Department of Molecular Pathology, Hefei Da'an Medical Laboratory Co., Ltd., Hefei, 230012, Anhui, People's Republic of China.
| | - Zhining Liu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Lemster AL, Weingart A, Bottner J, Perner S, Sailer V, Offermann A, Kirfel J. Elevated PSPC1 and KDM5C expression indicates poor prognosis in prostate cancer. Hum Pathol 2023; 138:1-11. [PMID: 37209920 DOI: 10.1016/j.humpath.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Prostate cancer (PCa) remains the most commonly diagnosed cancer in men worldwide and is still the second leading cause of cancer-related death. One major cause of PCa development is epigenetic aberration, including histone modification. We have previously demonstrated that Lysine Demethylase 5C (KDM5C) plays an essential role in the development of PCa and drives PCa progression by promoting epithelial-mesenchymal transition. Epigenetic regulators often work in concert, for example, to regulate transcription. We identified Paraspeckle Component 1 (PSPC1) as an interacting protein of KDM5C, suggesting that these proteins might function together in PCa. Here, we systematically investigate the expression patterns of KDM5C and PSPC1 in 2 independent prostate cohorts (432 and 205 prostate tumors in total for PSPC1 and KDM5C, respectively) by immunohistochemistry. We demonstrate that the expression of PSPC1 correlates with that of KDM5C. In addition, PSPC1 is up-regulated in primary and metastatic PCa. Elevated PSPC1 expression correlates with a higher-grade group and an advanced T-stage. Patients with high PSPC1 expression have a worse biochemical recurrence-free survival. In addition, PSPC1 expression is an independent prognostic parameter. Our data indicate that KDM5C and PSPC1 are involved in PCa progression, and therapeutic inhibition of KDM5C and PSPC1 by selective compounds might be a promising approach for the treatment of PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anika Weingart
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Justus Bottner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Sven Perner
- MVZ HPH Institute of Pathology and Hematology, GmbH, 22547, Hamburg, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany.
| |
Collapse
|
7
|
Metzler VM, de Brot S, Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Nilsson EM, Ntekim A, Persson JL, Robinson BD, Khani F, Laursen KB, Gudas LJ, Toss MS, Madhusudan S, Rakha E, Heery DM, Rutland CS, Mongan NP, Jeyapalan JN. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front Cell Dev Biol 2023; 11:1116424. [PMID: 37152294 PMCID: PMC10154691 DOI: 10.3389/fcell.2023.1116424] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC.
Collapse
Affiliation(s)
- Veronika M. Metzler
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Emeli M. Nilsson
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Emad Rakha
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Catrin S. Rutland
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| |
Collapse
|
8
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|