1
|
HUANG H, YANG M, LI T, WANG D, LI Y, TANG X, YUAN L, GU S, XU Y. Neferine inhibits the progression of diabetic nephropathy by modulating the miR-17-5p/nuclear factor E2-related factor 2 axis. J TRADIT CHIN MED 2024; 44:44-53. [PMID: 38213238 PMCID: PMC10774715 DOI: 10.19852/j.cnki.jtcm.20231204.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/17/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the effect of Neferine (Nef) on diabetic nephropathy (DN) and to explore the mechanism of Nef in DN based on miRNA regulation theory. METHODS A DN mouse model was constructed and treated with Nef. Serum creatinine (Crea), blood urea (UREA) and urinary albumin were measured in mice by kits, and renal histopathological changes and fibrosis were observed by hematoxylin-eosin staining and Masson staining. Renal tissue superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) activities were measured by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the expression of nuclear factor E2-related factor 2 (Nrf2)/ heme oxygenase 1 (HO-1) signaling pathway-related proteins in kidney tissues. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-17-5p in kidney tissues. Subsequently, a DN in vitro model was constructed by high glucose culture of human mesangial cells (HMCs), cells were transfected with miR-17-5p mimic and/or treated with Nef, and we used qRT-PCR to detect cellular miR-17 expression, flow cytometry to detect apoptosis, ELISAs to detect cellular SOD, MDA, and GSH-Px activities, Western blots to detect Nrf2/HO-1 signaling pathway-related protein expression, and dual luciferase reporter gene assays to verify the targeting relationship between Nrf2 and miR-17-5p. RESULTS Administration of Nef significantly reduced the levels of blood glucose, Crea, and UREA and the expression of miR-17-5p, improved renal histopathology and fibrosis, significantly reduced MDA levels, elevated SOD and GSH-Px activities, and activated Nrf2 expression in kidney tissues from mice with DN. Nrf2 is a post-transcriptional target of miR-17-5p. In HMCs transfected with miR-17-5p mimics, the mRNA and protein levels of Nrf2 were significantly suppressed. Furthermore, miR-17-5p overexpression and Nef intervention resulted in a significant increase in high glucose-induced apoptosis and MDA levels in HMCs and a significant decrease in the protein expression of HO-1 and Nrf2. CONCLUSION Collectively, these results indicate that Nef has an ameliorative effect on DN, and the mechanism may be through the miR-17-5p/Nrf2 pathway.
Collapse
Affiliation(s)
- Hongmei HUANG
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Maojun YANG
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Ting LI
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Dandan WANG
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Ying LI
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Xiaochi TANG
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Lu YUAN
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Shi GU
- 1 Department of Endocrinology, Chengdu Shuangliu District First People's Hospital (West China Airport of Sichuan University), Chengdu 610200, China
| | - Yong XU
- 2 Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Ali L, Raza AA, Zaheer AB, Alhomrani M, Alamri AS, Alghamdi SA, Almalki AA, Alghamdi AA, Khawaja I, Alhadrami M, Ramzan F, Jamil M, Ali M, Jabeen N. In vitro analysis of PI3K pathway activation genes for exploring novel biomarkers and therapeutic targets in clear cell renal carcinoma. Am J Transl Res 2023; 15:4851-4872. [PMID: 37560222 PMCID: PMC10408522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES The regulation of various cellular functions such as growth, proliferation, metabolism, and angiogenesis, is dependent on the PI3K pathway. Recent evidence has indicated that kidney renal clear cell carcinoma (KIRC) can be triggered by the deregulation of this pathway. The objective of this research was to investigate 25 genes associated with activation of the PI3K pathway in KIRC and control samples to identify four hub genes that might serve as novel molecular biomarkers and therapeutic targets for treating KIRC. METHODS Multi-omics in silico and in vitro analysis was employed to find hub genes related to the PI3K pathway that may be biomarkers and therapeutic targets for KIRC. RESULTS Using STRING software, a protein-protein interaction (PPI) network of 25 PI3K pathway-related genes was developed. Based on the degree scoring method, the top four hub genes were identified using Cytoscape's Cytohubba plug-in. TCGA datasets, KIRC (786-O and A-498), and normal (HK2) cells were used to validate the expression of hub genes. Additionally, further bioinformatic analyses were performed to investigate the mechanisms by which hub genes are involved in the development of KIRC. Out of a total of 25 PI3K pathway-related genes, we developed and validated a diagnostic and prognostic model based on the up-regulation of TP53 (tumor protein 53) and CCND1 (Cyclin D1) and the down-regulation of PTEN (Phosphatase and TENsin homolog deleted on chromosome 10), and GSK3B (Glycogen synthase kinase-3 beta) hub genes. The hub genes included in our model may be a novel therapeutic target for KIRC treatment. Additionally, associations between hub genes and infiltration of immune cells can enhance comprehension of immunotherapy for KIRC. CONCLUSION We have created a new diagnostic and prognostic model for KIRC patients that uses PI3K pathway-related hub genes (TP53, PTEN, CCND1, and GSK3B). Nevertheless, further experimental studies are required to ascertain the efficacy of our model.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Urology, Institute of Kidney Diseases, Hayatabad Medical ComplexPeshawar 25000, Pakistan
| | - Abbas Ali Raza
- Surgery Department, Bacha Khan Medical College, MTI Mardan Medical ComplexMardan 23200, Pakistan
| | | | - Majid Alhomrani
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif UniversityTaif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif UniversityTaif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Since, Medical Genetics, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Imran Khawaja
- Department of Medicine, Ayub Teaching HospitalAbbottabad 22010, Pakistan
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Alqura UniversityMakkah 24373, Saudi Arabia
| | - Faiqah Ramzan
- Department of Animal and Poultry Production, Faculty of Veterinary and Animal Sciences, Gomal UniversityDera Ismail Khan 29050, Pakistan
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Mubarik Ali
- Animal Science Institute, National Agricultural Research CenterIslamabad 54000, Pakistan
| | - Norina Jabeen
- Department of Rural Sociology, University of AgricultureFaisalabad 38040, Pakistan
| |
Collapse
|