1
|
Saadh MJ, Allela OQB, Kareem RA, Chandra M, Malathi H, Nathiya D, Kapila I, Sameer HN, Hamad AK, Athab ZH, Adil M. Exosomal signaling in gynecologic cancer development: The role of cancer-associated fibroblasts. Pathol Res Pract 2024; 266:155766. [PMID: 39689399 DOI: 10.1016/j.prp.2024.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Gynecologic cancer, a prevalent and debilitating disease affecting women worldwide, is characterized by the uncontrolled proliferation of cells in the reproductive organs. The complex etiology of gynecologic cancer encompasses multiple subtypes, including cervical, ovarian, uterine, vaginal, and vulvar cancers. Despite optimal treatment strategies, which typically involve cytoreductive surgery and platinum-based chemotherapy, gynecologic cancer frequently exhibits recalcitrant relapse and poor prognosis. Recent studies have underscored the significance of the tumor microenvironment in ovarian carcinogenesis, particularly with regards to the discovery of aberrant genomic, transcriptomic, and proteomic profiles. Within this context, cancer-associated fibroblasts (CAFs) emerge as a crucial component of the stromal cell population, playing a pivotal role in oncogenesis and cancer progression. CAF-derived exosomes, small extracellular vesicles capable of conveying biological information between cells, have been implicated in a range of tumor-related processes, including tumorigenesis, cell proliferation, metastasis, drug resistance, and immune responses. Furthermore, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins has been found to strongly correlate with clinical and pathological characteristics of gynecologic cancer patients. Our review provides a novel perspective on the role of CAF-derived exosomes in gynecologic cancer, highlighting their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ish Kapila
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Kim K, Khazan N, McDowell JL, Snyder CWA, Miller JP, Singh RK, Whittum ME, Turner R, Moore RG. The NF-κB-HE4 axis: A novel regulator of HE4 secretion in ovarian cancer. PLoS One 2024; 19:e0314564. [PMID: 39621651 PMCID: PMC11611113 DOI: 10.1371/journal.pone.0314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024] Open
Abstract
Ovarian cancer is the leading cause of death among gynecologic malignancies. Despite recent advancements in targeted therapies such as PARP inhibitors, recurrence is common and frequently resistant to existing therapies. A powerful diagnostic tool, coupled with a comprehensive understanding of its implications, is crucial. HE4, a clinical serum biomarker for ovarian cancer, has shown efficacy in monitoring malignant phenotypes, yet little is known about its biological role and regulatory mechanisms. Our research demonstrates that HE4 expression in ovarian cancer can be regulated by the NF-κB signaling pathway. We found that the activation of NF-κB signaling by tumor necrosis factor (TNF)-α, a cytokine found in ovarian cancer tumors and ascites, enhanced the secretion of HE4 while its inhibition suppressed HE4 levels. Nuclear translocation of the NF-κB component p65 was found to be critical for HE4 expression; induced NF-κB activation through p65 expression or constitutive IKK2 activity elevated HE4 expression, while p65 knockdown had the opposite effect. Furthermore, we observed that NF-κB mediated HE4 expression at the transcriptional level. Our data also suggests that there is a regulatory role for HE4 in the expression of α5-Integrin, a crucial adhesion molecule in ovarian cancer metastasis; HE4 knockdown corresponded with reduced α5-Integrin expression, cell migration and cell adhesion to fibronectin.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Negar Khazan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jamie L. McDowell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Cameron W. A. Snyder
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - John P. Miller
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Michelle E. Whittum
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Rachael Turner
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Richard G. Moore
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
3
|
Berry LK, Pullikuth AK, Stearns KL, Wang Y, Wagner CJ, Chou JW, Darby JP, Kelly MG, Mall R, Leung M, Chifman J, Miller LD. A patient stratification signature mirrors the immunogenic potential of high grade serous ovarian cancers. J Transl Med 2024; 22:1048. [PMID: 39568014 PMCID: PMC11577735 DOI: 10.1186/s12967-024-05846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND While high-grade serous ovarian cancer (HGSC) has proven largely resistant to immunotherapy, sporadic incidents of partial and complete response have been observed in clinical trials and case reports. These observations suggest that a molecular basis for effective immunity may exist within a subpopulation of HGSC. Herein, we developed an algorithm, CONSTRU (Computing Prognostic Marker Dependencies by Successive Testing of Gene-Stratified Subgroups), to facilitate the discovery and characterization of molecular backgrounds of HGSC that confer resistance or susceptibility to protective anti-tumor immunity. METHODS We used CONSTRU to identify genes from tumor expression profiles that influence the prognostic power of an established immune cytolytic activity signature (CYTscore). From the identified genes, we developed a stratification signature (STRATsig) that partitioned patient populations into tertiles that varied markedly by CYTscore prognostic power. The tertile groups were then analyzed for distinguishing biological, clinical and immunological properties using integrative bioinformatics approaches. RESULTS Patient survival and molecular measures of immune suppression, evasion and dysfunction varied significantly across STRATsig tertiles in validation cohorts. Tumors comprising STRATsig tertile 1 (S-T1) showed no immune-survival benefit and displayed a hyper-immune suppressed state marked by activation of TGF-β, Wnt/β-catenin and adenosine-mediated immunosuppressive pathways, with concurrent T cell dysfunction, reduced potential for antigen presentation, and enrichment of cancer-associated fibroblasts. By contrast, S-T3 tumors exhibited diminished immunosuppressive signaling, heightened antigen presentation machinery, lowered T cell dysfunction, and a significant CYTscore-survival benefit that correlated with mutational burden in a manner consistent with anti-tumor immunoediting. These tumors also showed elevated activity of DNA damage/repair, cell cycle/proliferation and oxidative phosphorylation, and displayed greater proportions of Th1 CD4 + T cells. In these patients, but not those of S-T1 or S-T2, validated predictors of immunotherapy response were prognostic of longer patient survival. Further analyses showed that STRATsig tertile properties were not explained by known HGSC molecular or clinical subtypes or singular immune mechanisms. CONCLUSIONS STRATsig is a composite of parallel immunoregulatory pathways that mirrors tumor immunogenic potential. Approximately one-third of HGSC cases classify as S-T3 and display a hypo-immunosuppressed and antigenic molecular composition that favors immunologic tumor control. These patients may show heightened responsiveness to current immunotherapies.
Collapse
Affiliation(s)
- Laurel K Berry
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristen L Stearns
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jeff W Chou
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Janelle P Darby
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael G Kelly
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Ming Leung
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
4
|
Chen C, Wang F, Cheng C, Li H, Fan Y, Jia L. Cancer-associated Fibroblasts-derived Exosomes with HOXD11 Overexpression Promote Ovarian Cancer Cell Angiogenesis Via FN1. Reprod Sci 2024:10.1007/s43032-024-01716-3. [PMID: 39394547 DOI: 10.1007/s43032-024-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Cancer-associated fibroblasts (CAFs) represent a critical stromal component of metastatic niche and promote metastasis in patients with ovarian cancer (OC). Here, we try to further understand the mechanism by which CAFs-derived exosomes (CAFs-Exo) promoted angiogenesis in OC. We intersected differentially expressed genes in OC cells after CAFs-Exo treatment in the GSE147610 dataset with a list of transcription factors to identify homeobox protein hox-D11 (HOXD11) as a possible cargo of CAFs-Exo. HOXD11 encapsulated by CAFs-Exo enhanced colony formation, migration, and invasion of OC cells. HOXD11 bound to the promoter of fibronectin (FN1) and promoted its transcription. HOXD11 knockdown from CAFs-Exo significantly repressed the VEGF and CD31 protein expression and tube formation, viability, and migration of human umbilical vein endothelial cells (HUVEC) and slowed angiogenesis and tumor growth in mice. Furthermore, we found that overexpression of FN1 increased the expression of angiogenic factors and activity of HUVEC in the presence of HOXD11 knockdown. These results verify the significant contribution of CAFs-Exo to angiogenesis in OC, which could be partially due to the promotion of FN1 mediated by HOXD11.
Collapse
Affiliation(s)
- Chunfei Chen
- Department of Gynaecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, P.R. China
| | - Fahui Wang
- Department of Gynaecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, P.R. China
| | - Chunling Cheng
- Department of Gynaecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, P.R. China
| | - Hongxin Li
- Department of Gynaecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, P.R. China
| | - Yadan Fan
- Department of Gynaecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, P.R. China
| | - Liping Jia
- Department of Gynaecology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, P.R. China.
| |
Collapse
|
5
|
Skorupa A, Klimek M, Ciszek M, Pakuło S, Cichoń T, Cichoń B, Boguszewicz Ł, Witek A, Sokół M. Metabolomic Analysis of Histological Composition Variability of High-Grade Serous Ovarian Cancer Using 1H HR MAS NMR Spectroscopy. Int J Mol Sci 2024; 25:10903. [PMID: 39456684 PMCID: PMC11507550 DOI: 10.3390/ijms252010903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
In this work, the HR MAS NMR (high-resolution magic-angle spinning nuclear magnetic resonance) spectroscopy technique was combined with standard histological examinations to investigate the metabolic features of high-grade serous ovarian cancer (HGSOC) with a special focus on the relation between a metabolic profile and a cancer cell fraction. The studied group consisted of 44 patients with HGSOC and 18 patients with benign ovarian tumors. Normal ovarian tissue was also excised from 13 control patients. The metabolic profiles of 138 tissue specimens were acquired on a Bruker Avance III 400 MHz spectrometer. The NMR spectra of the HGSOC samples could be discriminated from those acquired from the non-transformed tissue and were shown to depend on tumor purity. The most important features that differentiate the samples with a high fraction of cancer cells from the samples containing mainly fibrotic stroma are the increased intensities in the spectral regions corresponding to phosphocholine/glycerophosphocholine, phosphoethanolamine/serine, threonine, uridine nucleotides and/or uridine diphosphate (UDP) nucleotide sugars. Higher levels of glutamine, glutamate, acetate, lysine, alanine, leucine and isoleucine were detected in the desmoplastic stroma within the HGSOC lesions compared to the stroma of benign tumors. The HR MAS NMR analysis of the metabolic composition of the epithelial and stromal compartments within HGSOC contributes to a better understanding of the disease's biology.
Collapse
Affiliation(s)
- Agnieszka Skorupa
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| | - Mateusz Klimek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| | - Sławomir Pakuło
- Tumor Pathology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Tomasz Cichoń
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Bartosz Cichoń
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| | - Andrzej Witek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| |
Collapse
|
6
|
Flörkemeier I, Antons LK, Weimer JP, Hedemann N, Rogmans C, Krüger S, Scherließ R, Dempfle A, Arnold N, Maass N, Bauerschlag DO. Multicellular ovarian cancer spheroids: novel 3D model to mimic tumour complexity. Sci Rep 2024; 14:23526. [PMID: 39384844 PMCID: PMC11464915 DOI: 10.1038/s41598-024-73680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
In vitro, spheroid models have become well established in cancer research because they can better mimic certain characteristics of in vivo tumours. However, interaction with the tumour microenvironment, such as cancer-associated fibroblasts, plays a key role in tumour progression. We initially focused on the interaction of tumour cells with fibroblasts. To model this interaction, we developed a spheroid model of ovarian cancer and fibroblasts. To this end, ovarian cancer cell lines and ex vivo primary cells were simultaneously and sequentially seeded with fibroblasts in a scaffold-free system at different ratios and subsequently characterized with respect to changes in morphology, proliferation, and viability. We demonstrated that co-cultures are able to form by far more compact spheroids, especially in cells that form aggregates in mono-culture. In addition, the co-cultures were able to increase proliferation and sensitivity to cisplatin. Simultaneous seeding led fibroblasts invade the core in both cell lines and primary cells. These results show differences in formation, firmness, and size between co-culture and mono-culture. Our model is designed to better represent and characterize the mutual influencing factors of fibroblasts and tumour cells. Fibroblast-supplemented multicellular spheroids are a valuable tool for tumour microenvironment interaction and new drug discovery.
Collapse
Affiliation(s)
- Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- KiNSIS Priority Research Area, Kiel University, Kiel, Germany.
| | - Lisa K Antons
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jörg P Weimer
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nina Hedemann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
- KiNSIS Priority Research Area, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Gynaecology, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Plesselova S, Calar K, Axemaker H, Sahly E, Bhagia A, Faragher JL, Fink DM, de la Puente P. Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer. Cell Mol Bioeng 2024; 17:345-367. [PMID: 39513004 PMCID: PMC11538101 DOI: 10.1007/s12195-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/26/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00817-y.
Collapse
Affiliation(s)
- Simona Plesselova
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Kristin Calar
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Hailey Axemaker
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Emma Sahly
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- St. Olaf College, Northfield, MN USA
| | - Amrita Bhagia
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Jessica L. Faragher
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Darci M. Fink
- Department of Chemistry, Biochemistry & Physics, South Dakota State University, Brookings, SD USA
| | - Pilar de la Puente
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- Department of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Flow Cytometry Core, Sanford Research, Sioux Falls, SD USA
| |
Collapse
|
8
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
9
|
Muttiah B, Muhammad Fuad ND, Jaafar F, Abdullah NAH. Extracellular Vesicles in Ovarian Cancer: From Chemoresistance Mediators to Therapeutic Vectors. Biomedicines 2024; 12:1806. [PMID: 39200270 PMCID: PMC11351885 DOI: 10.3390/biomedicines12081806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches. Key resistance mechanisms include drug efflux, apoptosis disruption, enhanced DNA repair, cancer stem cells, immune evasion, and the complex tumor microenvironment. Cancer-associated fibroblasts and extracellular vesicles play crucial roles in modulating the tumor microenvironment and facilitating chemoresistance. EVs, naturally occurring nanovesicles, emerge as promising drug carriers due to their low toxicity, high biocompatibility, and inherent targeting capabilities. They have shown potential in delivering chemotherapeutics like doxorubicin, cisplatin, and paclitaxel, as well as natural compounds such as curcumin and berry anthocyanidins, enhancing therapeutic efficacy while reducing systemic toxicity in OC models. However, challenges such as low production yields, heterogeneity, rapid clearance, and inefficient drug loading methods need to be addressed for clinical application. Ongoing research aims to optimize EV production, loading efficiency, and targeting, paving the way for novel and more effective therapeutic strategies in OC treatment. Overcoming these obstacles is crucial to unlocking the full potential of EV-based therapies and improving outcomes for OC patients.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Dina Muhammad Fuad
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Monash University, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
10
|
Plesselova S, Calar K, Axemaker H, Sahly E, de la Puente P. Multicompartmentalized microvascularized tumor-on-a-chip to study tumor-stroma interactions and drug resistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596456. [PMID: 38853974 PMCID: PMC11160770 DOI: 10.1101/2024.05.29.596456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.
Collapse
|
11
|
Fu W, Feng Q, Tao R. Machine learning developed a fibroblast-related signature for predicting clinical outcome and drug sensitivity in ovarian cancer. Medicine (Baltimore) 2024; 103:e37783. [PMID: 38640321 PMCID: PMC11030012 DOI: 10.1097/md.0000000000037783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024] Open
Abstract
Ovarian cancer (OC) is the leading cause of gynecological cancer death. Cancer-associated fibroblasts (CAF) is involved in wound healing and inflammatory processes, tumor occurrence and progression, and chemotherapy resistance in OC. GSE184880 dataset was used to identify CAF-related genes in OC. CAF-related signature (CRS) was constructed using integrative 10 machine learning methods with the datasets from the Cancer Genome Atlas, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082. The performance of CRS in predicting immunotherapy benefits was verified using 3 immunotherapy datasets (GSE91061, GSE78220, and IMvigor210) and several immune calculating scores. The Lasso + StepCox[forward] method-based predicting model having a highest average C index of 0.69 was referred as the optimal CRS and it had a stable and powerful performance in predicting clinical outcome of OC patients, with the 1-, 3-, and 5-year area under curves were 0.699, 0.708, and 0.767 in the Cancer Genome Atlas cohort. The C index of CRS was higher than that of tumor grade, clinical stage, and many developed signatures. Low CRS score demonstrated lower tumor immune dysfunction and exclusion score, lower immune escape score, higher PD1&CTLA4 immunophenoscore, higher tumor mutation burden score, higher response rate and better prognosis in OC, suggesting a better immunotherapy response. OC patients with low CRS score had a lower half maximal inhibitory concentration value of some drugs (Gemcitabine, Tamoxifen, and Nilotinib, etc) and lower score of some cancer-related hallmarks (Notch signaling, hypoxia, and glycolysis, etc). The current study developed an optimal CRS in OC, which acted as an indicator for the prognosis, stratifying risk and guiding treatment for OC patients.
Collapse
Affiliation(s)
- Wei Fu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ran Tao
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Ding H, Li D, Chen Y, He W, Cai L. Cutaneous Metastasis of Ovarian Cancer on 68 Ga-FAPI PET/CT. Clin Nucl Med 2024; 49:351-352. [PMID: 38377371 DOI: 10.1097/rlu.0000000000005087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
ABSTRACT Ovarian cancer with cutaneous metastases is quite rare. We report the findings of cutaneous metastases from ovarian cancer on 68 Ga-FAPI PET/CT imaging. A 53-year-old woman with cutaneous metastases from ovarian cancer was enrolled in 68 Ga-FAPI PET/CT clinical trial. The images showed intense FAPI activity in the known cutaneous metastases.
Collapse
Affiliation(s)
| | - Dan Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | | | - Wenfeng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | | |
Collapse
|
13
|
Ding B, Ye Z, Yin H, Hong XY, Feng SW, Xu JY, Shen Y. Comprehensive single-cell analysis reveals heterogeneity of fibroblast subpopulations in ovarian cancer tissue microenvironment. Heliyon 2024; 10:e27873. [PMID: 38533040 PMCID: PMC10963331 DOI: 10.1016/j.heliyon.2024.e27873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Background Ovarian cancer, as a highly malignant tumor, features the critical involvement of tumor-associated fibroblasts in the ovarian cancer tissue microenvironment. However, due to the apparent heterogeneity within fibroblast subpopulations, the specific functions of these subpopulations in the ovarian cancer tissue microenvironment remain insufficiently elucidated. Methods In this study, we integrated single-cell sequencing data from 32 ovarian cancer samples derived from four distinct cohorts and 3226 bulk RNA-seq data from GEO and TCGA-OV cohorts. Utilizing computational frameworks such as Seurat, Monocle 2, Cellchat, and others, we analyzed the characteristics of the ovarian cancer tissue microenvironment, focusing particularly on fibroblast subpopulations and their differentiation trajectories. Employing the CIBERSORTX computational framework, we assessed various cellular components within the ovarian cancer tissue microenvironment and evaluated their associations with ovarian cancer prognosis. Additionally, we conducted Mendelian randomization analysis based on cis-eQTL to investigate causal relationships between gene expression and ovarian cancer. Results Through integrative analysis, we identified 13 major cell types present in ovarian cancer tissues, including CD8+ T cells, malignant cells, and fibroblasts. Analysis of the tumor microenvironment (TME) cell proportions revealed a significant increase in the proportion of CD8+ T cells and CD4+ T cells in tumor tissues compared to normal tissues, while fibroblasts predominated in normal tissues. Further subgroup analysis of fibroblasts identified seven subgroups, with the MMP11+Fib subgroup showing the highest activity in the TGFβ signaling pathway. Single-cell analysis suggested that oxidative phosphorylation could be a key pathway driving fibroblast differentiation, and the ATRNL1+KCN + Fib subgroup exhibited chromosomal copy number variations. Prognostic analysis using a large sample size indicated that high infiltration of MMP11+ fibroblasts was associated with poor prognosis in ovarian cancer. SMR analysis identified 132 fibroblast differentiation-related genes, which were linked to pathways such as platinum drug resistance. Conclusions In the context of ovarian cancer, fibroblasts expressing MMP11 emerge as the primary drivers of the TGF-beta signaling pathway. Their presence correlates with an increased risk of adverse ovarian prognoses. Additionally, the genetic regulation governing the differentiation of fibroblasts associated with ovarian cancer correlates with the emergence of drug resistance.
Collapse
Affiliation(s)
- Bo Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Han Yin
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xin-Yi Hong
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Song-wei Feng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing-Yun Xu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Feng S, Ding B, Dai Z, Yin H, Ding Y, Liu S, Zhang K, Lin H, Xiao Z, Shen Y. Cancer-associated fibroblast-secreted FGF7 as an ovarian cancer progression promoter. J Transl Med 2024; 22:280. [PMID: 38491511 PMCID: PMC10941588 DOI: 10.1186/s12967-024-05085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is distinguished by its aggressive nature and the limited efficacy of current treatment strategies. Recent studies have emphasized the significant role of cancer-associated fibroblasts (CAFs) in OC development and progression. METHODS Employing sophisticated machine learning techniques on bulk transcriptomic datasets, we identified fibroblast growth factor 7 (FGF7), derived from CAFs, as a potential oncogenic factor. We investigated the relationship between FGF7 expression and various clinical parameters. A series of in vitro experiments were undertaken to evaluate the effect of CAFs-derived FGF7 on OC cell activities, such as proliferation, migration, and invasion. Single-cell transcriptomic analysis was also conducted to elucidate the interaction between FGF7 and its receptor. Detailed mechanistic investigations sought to clarify the pathways through which FGF7 fosters OC progression. RESULTS Our findings indicate that higher FGF7 levels correlate with advanced tumor stages, increased vascular invasion, and poorer prognosis. CAFs-derived FGF7 significantly enhanced OC cell proliferation, migration, and invasion. Single-cell analysis and in vitro studies revealed that CAFs-derived FGF7 inhibits the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF-1α) via FGFR2 interaction. Activation of the FGF7/HIF-1α pathway resulted in the upregulation of mesenchymal markers and downregulation of epithelial markers. Importantly, in vivo treatment with neutralizing antibodies targeting CAFs-derived FGF7 substantially reduced tumor growth. CONCLUSION Neutralizing FGF7 in the medium or inhibiting HIF-1α signaling reversed the effects of FGF7-mediated EMT, emphasizing the dependence of FGF7-mediated EMT on HIF-1α activation. These findings suggest that targeting the FGF7/HIF-1α/EMT axis may offer new therapeutic opportunities to intervene in OC progression.
Collapse
Affiliation(s)
- Songwei Feng
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhu Dai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yin
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yue Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Sicong Liu
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ke Zhang
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
15
|
Chai C, Liang L, Mikkelsen NS, Wang W, Zhao W, Sun C, Bak RO, Li H, Lin L, Wang F, Luo Y. Single-cell transcriptome analysis of epithelial, immune, and stromal signatures and interactions in human ovarian cancer. Commun Biol 2024; 7:131. [PMID: 38278958 PMCID: PMC10817929 DOI: 10.1038/s42003-024-05826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A comprehensive investigation of ovarian cancer (OC) progression at the single-cell level is crucial for enhancing our understanding of the disease, as well as for the development of better diagnoses and treatments. Here, over half a million single-cell transcriptome data were collected from 84 OC patients across all clinical stages. Through integrative analysis, we identified heterogeneous epithelial-immune-stromal cellular compartments and their interactions in the OC microenvironment. The epithelial cells displayed clinical subtype features with functional variance. A significant increase in distinct T cell subtypes was identified including Tregs and CD8+ exhausted T cells from stage IC2. Additionally, we discovered antigen-presenting cancer-associated fibroblasts (CAFs), with myofibroblastic CAFs (myCAFs) exhibiting enriched extracellular matrix (ECM) functionality linked to tumor progression at stage IC2. Furthermore, the NECTIN2-TIGIT ligand-receptor pair was identified to mediate T cells communicating with epithelial, fibroblast, endothelial, and other cell types. Knock-out of NECTIN2 using CRISPR/Cas9 inhibited ovarian cancer cell (SKOV3) proliferation, and increased T cell proliferation when co-cultured. These findings shed light on the cellular compartments and functional aspects of OC, providing insights into the molecular mechanisms underlying stage IC2 and potential therapeutic strategies for OC.
Collapse
Affiliation(s)
- Chaochao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Langchao Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandong Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Chengcheng Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeScience, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
16
|
Yang Z, Zhou D, Huang J. Identifying Explainable Machine Learning Models and a Novel SFRP2 + Fibroblast Signature as Predictors for Precision Medicine in Ovarian Cancer. Int J Mol Sci 2023; 24:16942. [PMID: 38069266 PMCID: PMC10706905 DOI: 10.3390/ijms242316942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer (OC) is a type of malignant tumor with a consistently high mortality rate. The diagnosis of early-stage OC and identification of functional subsets in the tumor microenvironment are essential to the development of patient management strategies. However, the development of robust models remains unsatisfactory. We aimed to utilize artificial intelligence and single-cell analysis to address this issue. Two independent datasets were screened from the Gene Expression Omnibus (GEO) database and processed to obtain overlapping differentially expressed genes (DEGs) in stage II-IV vs. stage I diseases. Three explainable machine learning algorithms were integrated to construct models that could determine the tumor stage and extract important characteristic genes as diagnostic biomarkers. Correlations between cancer-associated fibroblast (CAF) infiltration and characteristic gene expression were analyzed using TIMER2.0 and their relationship with survival rates was comprehensively explored via the Kaplan-Meier plotter (KM-plotter) online database. The specific expression of characteristic genes in fibroblast subsets was investigated through single-cell analysis. A novel fibroblast subset signature was explored to predict immune checkpoint inhibitor (ICI) response and oncogene mutation through Tumor Immune Dysfunction and Exclusion (TIDE) and artificial neural network algorithms, respectively. We found that Support Vector Machine-Shapley Additive Explanations (SVM-SHAP), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) successfully diagnosed early-stage OC (stage I). The area under the receiver operating characteristic curves (AUCs) of these models exceeded 0.990. Their overlapping characteristic gene, secreted frizzled-related protein 2 (SFRP2), was a risk factor that affected the overall survival of OC patients with stage II-IV disease (log-rank test: p < 0.01) and was specifically expressed in a fibroblast subset. Finally, the SFRP2+ fibroblast signature served as a novel predictor in evaluating ICI response and exploring pan-cancer tumor protein P53 (TP53) mutation (AUC = 0.853, 95% confidence interval [CI]: 0.829-0.877). In conclusion, the models based on SVM-SHAP, XGBoost, and RF enabled the early detection of OC for clinical decision making, and SFRP2+ fibroblast signature used in diagnostic models can inform OC treatment selection and offer pan-cancer TP53 mutation detection.
Collapse
Affiliation(s)
| | | | - Jun Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Chan WS, Mo X, Ip PPC, Tse KY. Patient-derived organoid culture in epithelial ovarian cancers-Techniques, applications, and future perspectives. Cancer Med 2023; 12:19714-19731. [PMID: 37776168 PMCID: PMC10587945 DOI: 10.1002/cam4.6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease composed of different cell types with different molecular aberrations. Traditional cell lines and mice models cannot recapitulate the human tumor biology and tumor microenvironment (TME). Patient-derived organoids (PDOs) are freshly derived from patients' tissues and are then cultured with extracellular matrix and conditioned medium. The high concordance of epigenetic, genomic, and proteomic landscapes between the parental tumors and PDOs suggests that PDOs can provide more reliable results in studying cancer biology, allowing high throughput drug screening, and identifying their associated signaling pathways and resistance mechanisms. However, despite having a heterogeneity of cells in PDOs, some cells in TME will be lost during the culture process. Next-generation organoids have been developed to circumvent some of the limitations. Genetically engineered organoids involving targeted gene editing can facilitate the understanding of tumorigenesis and drug response. Co-culture systems where PDOs are cultured with different cell components like immune cells can allow research using immunotherapy which is otherwise impossible in conventional cell lines. In this review, the limitations of the traditional in vitro and in vivo assays, the use of PDOs, the challenges including some tips and tricks of PDO generation in EOC, and the future perspectives, will be discussed.
Collapse
Affiliation(s)
- Wai Sun Chan
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| | - Xuetang Mo
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| | | | - Ka Yu Tse
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| |
Collapse
|
18
|
Wu Q, Jiang G, Sun Y, Li B. Reanalysis of single-cell data reveals macrophage subsets associated with the immunotherapy response and prognosis of patients with endometrial cancer. Exp Cell Res 2023; 430:113736. [PMID: 37541419 DOI: 10.1016/j.yexcr.2023.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Endometrial cancer (EC) is an aggressive gynecological malignancy with an increased incidence rate. The immune landscape crucially affects immunotherapy efficacy and prognosis in EC patients. Here, we characterized the distinct tumor microenvironment signatures of EC tumors by analyzing single-cell RNA sequencing data from Gene Expression Omnibus and bulk RNA sequencing data from The Cancer Genome Atlas, which were compared with normal endometrium. Three macrophage subsets were identified, and two of them showed tissue-specific distribution. One of the macrophage subsets was dominant in macrophages derived from EC and exhibited characteristic behaviors such as promoting tumor growth and metastasis. One of the other macrophage subsets was mainly found in normal endometrium and served functions related to antigen presentation. We also identified a macrophage subset that was found in both EC and normal endometrial tissue. However, the pathway and cellular cross-talk of this subset were completely different based on the respective origin, suggesting a tumor-related differentiation mechanism of macrophages. Additionally, the tumor-enriched macrophage subset was found to predict immunotherapy responses in EC. Notably, we selected six genes from macrophage subset markers that could predict the survival of EC patients, SCL8A1, TXN, ANXA5, CST3, CD74 and NANS, and constructed a prognostic signature. To verify the signature, we identified immunohistochemistry for the tumor samples of 83 EC patients based on the selected genes and further followed up with the survival of the patients. Our results provide strong evidence that the signature can effectively predict the prognosis of EC patients.
Collapse
Affiliation(s)
- Qianhua Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Genyi Jiang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yihan Sun
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Tang PW, Frisbie L, Hempel N, Coffman L. Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. Am J Physiol Cell Physiol 2023; 325:C731-C749. [PMID: 37545409 DOI: 10.1152/ajpcell.00588.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.
Collapse
Affiliation(s)
- Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
20
|
Han Q, Tan S, Gong L, Li G, Wu Q, Chen L, Du S, Li W, Liu X, Cai J, Wang Z. Omental cancer-associated fibroblast-derived exosomes with low microRNA-29c-3p promote ovarian cancer peritoneal metastasis. Cancer Sci 2023; 114:1929-1942. [PMID: 36644823 PMCID: PMC10154903 DOI: 10.1111/cas.15726] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is characterized by frequent widespread peritoneal metastasis. Cancer-associated fibroblasts (CAFs) represent a critical stromal component of metastatic niche and promote omentum metastasis in OC patients. However, the role of exosomes derived from omental CAFs in metastasis remains unclear. We isolated exosomes from primary omental normal fibroblasts (NFs) and CAFs from OC patients (NF-Exo and CAF-Exo, respectively) and assessed their effect on metastasis. In mice bearing orthotopic OC xenografts, CAF-Exo treatment led to more rapid intraperitoneal tumor dissemination and shorter animal survival. Similar results were observed in mice undergoing intraperitoneal injection of tumor cells. Among the miRNAs downregulated in CAF-Exo, miR-29c-3p in OC tissues was associated with metastasis and survival in patients. Moreover, increasing miR-29c-3p in CAF-Exo significantly weakened the metastasis-promoting effect of CAF-Exo. Based on RNA sequencing, expression assays, and luciferase assays, matrix metalloproteinase 2 (MMP2) was identified as a direct target of miR-29c-3p. These results verify the significant contribution of exosomes from omental CAFs to OC peritoneal metastasis, which could be partially due to the relief of MMP2 expression inhibition mediated by low exosomal miR-29c-3p.
Collapse
Affiliation(s)
- Qing Han
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- China Three Gorges University People's HospitalChina Three Gorges UniversityYichangChina
| | - Shuran Tan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guoqing Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Le Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Zoń A, Bednarek I. Cisplatin in Ovarian Cancer Treatment-Known Limitations in Therapy Force New Solutions. Int J Mol Sci 2023; 24:ijms24087585. [PMID: 37108749 PMCID: PMC10146189 DOI: 10.3390/ijms24087585] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Cisplatin is one of the most commonly used anticancer drugs worldwide. It is mainly used in the treatment of ovarian cancer, but also used in testicular, bladder and lung cancers. The significant advantage of this drug is the multidirectional mechanism of its anticancer action, with the most important direction being damaging the DNA of cancer cells. Unfortunately, cisplatin displays a number of serious disadvantages, including toxicity to the most important organs, such as kidneys, heart, liver and inner ear. Moreover, a significant problem among patients with ovarian cancer, treated with cisplatin, is the development of numerous resistance mechanisms during therapy, including changes in the processes of cellular drug import and export, changes in the DNA damage repair mechanisms, as well as numerous changes in the processes of apoptosis and autophagy. Due to all of the mentioned problems, strategies to increase the effectiveness of cisplatin in the treatment of ovarian cancer are intensively sought. The most important strategy includes the development of less toxic cisplatin analogs. Another important direction is combination therapy, involving the simultaneous use of cisplatin with different anticancer drugs, substances derived from plants, temperature or radiotherapy. Many years of observations accompanying the presence of cisplatin in the therapy made it possible to provide a series of verifiable, statistically significant data, but also to show how, over time, with the new information and scientific discoveries, it is possible to describe and understand the therapeutic problems observed in practice, such as the acquisition of drug resistance by tumor cells or induction of changes in the tumor microenvironment. According to the authors, confronting what we knew so far with what new trends offer has a profound meaning. This paper presents information on the history of cisplatin and describes the molecular mechanisms of its action and the development of resistance by cancer cells. In addition, our goal was to highlight a number of therapeutic strategies to increase the effectiveness of cisplatin in the treatment of ovarian cancer, as well as to identify methods to eliminate problems associated with the use of cisplatin.
Collapse
Affiliation(s)
- Aleksandra Zoń
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
22
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
23
|
Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina (B Aires) 2023; 59:medicina59030544. [PMID: 36984544 PMCID: PMC10057458 DOI: 10.3390/medicina59030544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients’ poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.
Collapse
|
24
|
Xu X, Wu Y, Jia G, Zhu Q, Li D, Xie K. A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and immunotherapy responsiveness in ovarian cancer. J Ovarian Res 2023; 16:5. [PMID: 36611197 PMCID: PMC9826597 DOI: 10.1186/s13048-022-01088-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most fatal gynaecological malignancy and has a poor prognosis. Glycosylation, the biosynthetic process that depends on specific glycosyltransferases (GTs), has recently attracted increasing importance due to the vital role it plays in cancer. In this study, we aimed to determine whether OC patients could be stratified by glycosyltransferase gene profiles to better predict the prognosis and efficiency of immune checkpoint blockade therapies (ICBs). METHODS We retrieved transcriptome data across 420 OC and 88 normal tissue samples using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively. An external validation dataset containing 185 OC samples was downloaded from the Gene Expression Omnibus (GEO) database. Knockdown and pathway prediction of B4GALT5 were conducted to investigate the function and mechanism of B4GALT5 in OC proliferation, migration and invasion. RESULTS A total of 50 differentially expressed GT genes were identified between OC and normal ovarian tissues. Two clusters were stratified by operating consensus clustering, but no significant prognostic value was observed. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 6-gene signature was built that classified OC patients in the TCGA cohort into a low- or high-risk group. Patients with high scores had a worse prognosis than those with low scores. This risk signature was further validated in an external GEO dataset. Furthermore, the risk score was an independent risk predictor, and a nomogram was created to improve the accuracy of prognostic classification. Notably, the low-risk OC patients exhibited a higher degree of antitumor immune cell infiltration and a superior response to ICBs. B4GALT5, one of six hub genes, was identified as a regulator of proliferation, migration and invasion in OC. CONCLUSION Taken together, we established a reliable GT-gene-based signature to predict prognosis, immune status and identify OC patients who would benefit from ICBs. GT genes might be a promising biomarker for OC progression and a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Xuyao Xu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Yue Wu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Genmei Jia
- grid.459791.70000 0004 1757 7869Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Qiaoying Zhu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Dake Li
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Kaipeng Xie
- grid.459791.70000 0004 1757 7869Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China ,grid.459791.70000 0004 1757 7869Department of Public Health, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| |
Collapse
|
25
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Koirala N, Gaster K, Espaillat LR, Starks D, Dey N. Patient-Derived Primary Cancer-Associated Fibroblasts Mediate Resistance to Anti-Angiogenic Drug in Ovarian Cancers. Biomedicines 2023; 11:biomedicines11010112. [PMID: 36672620 PMCID: PMC9855717 DOI: 10.3390/biomedicines11010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancers rank first in both aggressiveness and dismal prognosis among gynecological neoplasms. The poor outcome is explained by the fact that most patients present with late-stage disease and progress through the first line of treatment. Ovarian neoplasms, especially epithelial ovarian cancers, are diagnosed at advanced/metastatic stages, often with a high angiogenesis index, one of the hallmarks of ovarian cancers with rapid progression and poor outcome as resistance to anti-angiogenic therapy develops. Despite therapy, the metastatic progression of aggressive ovarian cancer is a spectacularly selective function of tumor cells aided and abetted by the immune, mesenchymal and angiogenic components of the tumor microenvironment (TME) that enforces several pro-metastatic event(s) via direct and indirect interactions with stromal immune cells, cancer-associated fibroblasts (CAFs), and vascular endothelial cells. Since transdifferentiation of tumor endothelium is one of the major sources of CAFs, we hypothesized that ovarian CAF plays a critical role in resisting anti-angiogenic effects via direct crosstalk with endothelium and hence plays a direct role in the development of resistance to anti-angiogenic drugs. To test the hypothesis, we set up a hybrid ex vivo model for co-culture comprising Patient-Derived ex vivo primary CAFs from ovarian tumor samples and human umbilical vein endothelial cells (HUVEC). Patient-Derived CAFs were characterized by the mRNA and protein expression of positive (SMA, S100A4, TE-7, FAP-A, CD90/THY1), negative (EpCAM, CK 8,18, CD31, CD44, CD45), functional (PDGFRA, TGFB1, TGFB2, TGFRA) and immunological markers (PD-L1, PD-L2, PD-1) associated with CAFs by qRT-PCR, flow cytometry, Western blot, and ICC. Data from our HUVEC-on-CAF ex vivo Hybrid Co-Culture (HyCC) study demonstrate the pro-angiogenic effect of Patient-Derived ovarian CAFs by virtue of their ability to resist the effect of anti-angiogenic drugs, thereby aiding the development of resistance to anti-angiogenic drugs. Ascertaining direct experimental proof of the role of CAFs in developing resistance to specific anti-angiogenic drugs will provide an opportunity to investigate new drugs for counteracting CAF resistance and "normalizing/re-educating" TME in aggressive ovarian cancers. Our data provide a unique experimental tool for the personalized testing of anti-angiogenic drugs, positively predicting the development of future resistance to anti-angiogenic drugs well before it is clinically encountered in patients.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
| | - Jennifer C. Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Nischal Koirala
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Assistant VP Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
- Correspondence:
| |
Collapse
|
26
|
Ji C, He Y, Wang Y. Identification of necroptosis subtypes and development of necroptosis-related risk score model for in ovarian cancer. Front Genet 2022; 13:1043870. [PMID: 36568363 PMCID: PMC9773578 DOI: 10.3389/fgene.2022.1043870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background: ith the ongoing development of targeted therapy, non-apoptotic cell death, including necroptosis, has become a popular topic in the field of prevention and treatment. The purpose of this study was to explore the effect of necroptosis-related genes (NRGs) on the classification of ovarian cancer (OV) subtypes and to develop a necroptosis-related risk score (NRRS) classification system. Methods: 74 NRGs were obtained from the published studies, and univariate COX regression analysis was carried out between them and OV survival. Consensus clustering analysis was performed on OV samples according to the expression of NRGs related to prognosis. Furthermore, the NRRS model was developed by combining Weighted Gene Co-Expression Network Analysis (WGCNA) with least absolute shrinkage and selection operator (Lasso)-penalized Cox regression and multivariate Cox regression analysis. And the decision tree model was constructed based on the principle of random forest screening factors principle. Results: According to the post-related NRGs, OV was divided into two necroptosis subtypes. Compared with Cluster 1 (C1), the overall survival (OS) of Cluster 2 (C2) was significantly shorter, stromal score and immune score, the infiltration level of tumor associated immune cells and the expression of 20 immune checkpoints were significantly higher. WGCNA identified the blue module most related to necroptosis subtype, and 12 genes in the module were used to construct NRRS. NRRS was an independent prognostic variable of OV. The OS of samples with lower NRRS was significantly longer, and tumor mutation burden and homologous recombination defect were more obvious. Conclusion: This study showed that necroptosis plays an important role in the classification, prognosis, immune infiltration and biological characteristics of OV subtypes. The evaluation of tumor necroptosis may provide a new perspective for OV treatment.
Collapse
|
27
|
Xu T, Liu Z, Huang L, Jing J, Liu X. Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy. Front Immunol 2022; 13:1057850. [PMID: 36532066 PMCID: PMC9751906 DOI: 10.3389/fimmu.2022.1057850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
With encouraging antitumor effects, immunotherapy represented by immune checkpoint blockade has developed into a mainstream cancer therapeutic modality. However, only a minority of ovarian cancer (OC) patients could benefit from immunotherapy. The main reason is that most OC harbor a suppressive tumor immune microenvironment (TIME). Emerging studies suggest that M2 tumor-associated macrophages (TAMs), T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs) are enriched in OC. Thus, reversing the suppressive TIME is considered an ideal candidate for improving the efficiency of immunotherapy. Nanoparticles encapsulating immunoregulatory agents can regulate immunocytes and improve the TIME to boost the antitumor immune response. In addition, some nanoparticle-mediated photodynamic and photothermal therapy can directly kill tumor cells and induce tumor immunogenic cell death to activate antigen-presenting cells and promote T cell infiltration. These advantages make nanoparticles promising candidates for modulating the TIME and improving OC immunotherapy. In this review, we analyzed the composition and function of the TIME in OC and summarized the current clinical progress of OC immunotherapy. Then, we expounded on the promising advances in nanomaterial-mediated immunotherapy for modulating the TIME in OC. Finally, we discussed the obstacles and challenges in the clinical translation of this novel combination treatment regimen. We believe this resourceful strategy will open the door to effective immunotherapy of OC and benefit numerous patients.
Collapse
Affiliation(s)
| | | | | | - Jing Jing
- *Correspondence: Xiaowei Liu, ; Jing Jing,
| | | |
Collapse
|
28
|
Rajtak A, Ostrowska-Leśko M, Żak K, Tarkowski R, Kotarski J, Okła K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front Immunol 2022; 13:1018256. [PMID: 36439144 PMCID: PMC9684707 DOI: 10.3389/fimmu.2022.1018256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Cancer is a disease that induces many local and systemic changes in immunity. The difficult nature of ovarian cancer stems from the lack of characteristic symptoms that contributes to a delayed diagnosis and treatment. Despite the enormous progress in immunotherapy, its efficacy remains limited. The heterogeneity of tumors, lack of diagnostic biomarkers, and complex immune landscape are the main challenges in the treatment of ovarian cancer. Integrative approaches that combine the tumor microenvironment - local immunity - together with periphery - systemic immunity - are urgently needed to improve the understanding of the disease and the efficacy of treatment. In fact, multiparametric analyses are poised to improve our understanding of ovarian tumor immunology. We outline an integrative approach including local and systemic immunity in ovarian cancer. Understanding the nature of both localized and systemic immune responses will be crucial to boosting the efficacy of immunotherapies in ovarian cancer patients.
Collapse
Affiliation(s)
- Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska-Leśko
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Klaudia Żak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okła
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
- Department of Surgery, University of Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Liang Q, Xu Z, Liu Y, Peng B, Cai Y, Liu W, Yan Y. NR2F1 Regulates TGF-β1-Mediated Epithelial-Mesenchymal Transition Affecting Platinum Sensitivity and Immune Response in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14194639. [PMID: 36230565 PMCID: PMC9563458 DOI: 10.3390/cancers14194639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism underlying platinum resistance in ovarian cancer (OC) remains unclear. We used bioinformatic analyses to screen differentially expressed genes responsible for platinum resistance and explore NR2F1′s correlation with prognostic implication and OC staging. Moreover, Gene-set enrichment analysis (GSEA) and Gene Ontology (GO) analyses were used for pathway analysis. Epithelial-mesenchymal transition (EMT) properties, invasion, and migration capacities were analyzed by biochemical methods. The association between NR2F1 and cancer-associated fibroblast (CAF) infiltration and immunotherapeutic responses were also researched. A total of 13 co-upregulated genes and one co-downregulated gene were obtained. Among them, NR2F1 revealed the highest correlation with a poor prognosis and positively correlated with OC staging. GSEA and GO analysis suggested the induction of EMT via TGFβ-1 might be a possible mechanism that NR2F1 participates in resistance. In vitro experiments showed that NR2F1 knockdown did not affect cell proliferation, but suppressed cell invasion and migration with or without cisplatin treatment through the EMT pathway. We also found that NR2F1 could regulate TGF-β1 signaling, and treating with TGF-β1 could reverse these effects. Additionally, NR2F1 was predominantly associated with immunosuppressive CAF infiltration, which might cause a poor response to immune check blockades. In conclusion, NR2F1 regulates TGF-β1-mediated EMT affecting platinum sensitivity and immune response in OC patients.
Collapse
Affiliation(s)
- Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|