1
|
Predoi D, Ţălu Ş, Carmen Ciobanu S, Iconaru SL, Saraiva Matos R, Duarte da Fonseca Filho H. Exploring the physicochemical traits, antifungal capabilities, and 3D spatial complexity of hydroxyapatite with Ag +Mg 2+ substitution in the biocomposite thin films. Micron 2024; 184:103661. [PMID: 38833994 DOI: 10.1016/j.micron.2024.103661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
The silver/magnesium doped hydroxyapatite (AgMgHAp, Ca10-x-yAgxMgy(PO4)6(OH)2, xAg=0.05 and yMg=0.02) nanocomposites coatings were deposited on Si substrate using the dip coating technique. The resulting coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR-ATR) spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The EDS analysis highlighted the presence of the constitutive elements of the silver/magnesium doped hydroxyapatite (AgMgHAp) nanocomposites coatings. The surface microtexture of the AgMgHAp was assessed by atomic force microscopy (AFM) technique. The AFM data suggested the obtaining of a uniform deposited layer comprised of equally distributed nanoconglomerates. FT-IR studies highlighted the presence of vibrational modes associated with the phosphate and hydroxyl groups. No bands associated with silver or magnesium were observed. The XPS analysis highlighted the presence of the constituent elements of hydroxyapatite (Ca 2p, P 2 s, O 1 s), as well as dopants (Ag 3d, Mg 1 s and Mg 2p). The antifungal evaluation of AgMgHAp coatings was carried out using the Candida albicans ATCC 10231 fungal strain. The results of the antifungal assay revealed that the AgMgHAp coatings exhibited a strong inhibitory antifungal activity. Furthermore, the data highlighted that the AgMgHAp inhibited the development of biofilm on their surface. The results revealed that the antifungal activity of the coating varied based on the duration of incubation. On the other hand, the data also showed that AgMgHAp nanocomposites coatings inhibited the fungal cell adhesion and development from the early stages of the incubation. In addition to morphological analysis, we additionally take advantage of AFM images to investigate and explore the domain of fractal and multifractal analysis applied to the films under evaluation. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. Our studies indicates that nanocomposite coatings made from AgMgHAp demonstrate strong antifungal properties. These results suggest the potential of AgMgHAp nanocomposite coatings as a promising solution for developing innovative antifungal devices in biomedical applications.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, Magurele 077125, Romania
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., Cluj-Napoca, Cluj 400020, Romania.
| | - Steluţa Carmen Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, Magurele 077125, Romania
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, Magurele 077125, Romania
| | - Robert Saraiva Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá (UNIFAP), Macapá, Amapá 68903-419, Brazil
| | - Henrique Duarte da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy (LSNN), Physics Department, Federal University of Amazonas - UFAM, Manaus, Amazonas 69067-005, Brazil
| |
Collapse
|
2
|
Matos RS, Pinto EP, Pires MA, Ramos GQ, Ţălu Ş, Lima LS, da Fonseca Filho HD. Evaluating the roughness dynamics of kefir biofilms grown on Amazon cupuaçu juice: a monofractal and multifractal approach. Microscopy (Oxf) 2024; 73:55-65. [PMID: 37540558 DOI: 10.1093/jmicro/dfad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
We conducted a comprehensive analysis of the surface microtexture of kefir biofilms grown on Theobroma grandiflorum Shum (cupuaçu) juice using atomic force microscopy. Our goal was to investigate the unique monofractal and multifractal spatial patterns of these biofilms to complement the existing limited literature. The biofilms were prepared dispersing four different concentrations of kefir grains in cupuaçu juice. Our morphological analysis showed that the surface of the obtained biofilms is essentially formed by the presence of cupuaçu fibers and microorganisms like lactobacilli and yeast. The topographic height-based parameter analysis reveals that there is a dependence between surface roughness and the concentration of kefir grains used. The strongly anisotropic well-centralized topographical height distribution of the biofilms also exhibited a quasi-symmetrical and platykurtic pattern. The biofilms exhibit comparable levels of spatial complexity, surface percolation and surface homogeneity, which can be attributed to their similar topographic uniformity. This aspect was further supported by the presence of similar multifractality in the biofilms, suggesting that despite their varying topographic roughness, their vertical growth dynamics follow a similar pattern. Our findings demonstrate that the surface roughness of kefir biofilms cultivated on cupuaçu juice is influenced by the concentration of kefir grains in the precursor solution. However, this dependence follows a consistent pattern across different concentrations. Graphical Abstract.
Collapse
Affiliation(s)
- Robert S Matos
- Amazonian Materials Group, Department of Physics, Federal University of Amapá-UNIFAP, Rod. Juscelino Kubitscheck, km 02 - Jardim Marco Zero, Macapá, Amapá 68.903-419, Brazil
| | - Erveton P Pinto
- Amazonian Materials Group, Department of Physics, Federal University of Amapá-UNIFAP, Rod. Juscelino Kubitscheck, km 02 - Jardim Marco Zero, Macapá, Amapá 68.903-419, Brazil
| | - Marcelo A Pires
- Department of Physiscs, Federal University of Alagoas-UFAL, Rodovia AL 145, Km 3, 3849 - Cidade Universitária, Delmiro Gouveia, Alagoas 57.480-000, Brazil
| | - Glenda Q Ramos
- Centro Multiusuário para Análise de Fenômenos Biomédicos da Universidade do Estado do Amazonas, Universidade do Estado do Amazonas-UEA, Av. Carvalho Leal, 1777 - Cachoeirinha, Amazonas 69.065-001, Brazil
| | - Ştefan Ţălu
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu St., no. 15, Cluj-Napoca, Cluj County 400020, Romania
| | - Lucas S Lima
- Laboratory of Corrosion and Nanotechnology (LCNT), Federal University of Sergipe-UFS, Cidade Universitária Prof. "José Aloísio de Campos" Av. Marechal Rondom, S/N - Jardim Rosa Elze, São Cristovão, Sergipe 49.100-000, Brazil
| | - Henrique D da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy, Department of Physics, Federal University of Amazonas-UFAM, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado I, Manaus, Amazonas 69.067-005, Brazil
| |
Collapse
|
3
|
Andronache I, Peptenatu D, Ahammer H, Radulovic M, Djuričić GJ, Jelinek HF, Russo C, Di Ieva A. Fractals in the Neurosciences: A Translational Geographical Approach. ADVANCES IN NEUROBIOLOGY 2024; 36:953-981. [PMID: 38468071 DOI: 10.1007/978-3-031-47606-8_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The chapter presents three new fractal indices (fractal fragmentation index, fractal tentacularity index, and fractal anisotropy index) and normalized Kolmogorov complexity with proven applicability in geographic research, developed by the authors, and the possibility of their future use in neuroscience. The research demonstrates the relevance of fractal analysis in different fields and the basic concepts and principles of fractal geometry being sufficient for the development of models relevant to the studied reality. Also, the research highlighted the need to continue interdisciplinary research based on known fractal indicators, as well as the development of new analysis methods with the translational potential between fields.
Collapse
Affiliation(s)
- Ion Andronache
- Research Center for Integrated Analysis and Territorial Management, Faculty of Geography, University of Bucharest, Bucharest, Romania.
| | - Daniel Peptenatu
- Research Center for Integrated Analysis and Territorial Management, Faculty of Geography, University of Bucharest, Bucharest, Romania
| | - Helmut Ahammer
- GSRC, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Goran J Djuričić
- Department of Radiology, Faculty of Medicine, University of Belgrade, University Children's Hospital, Belgrade, Serbia
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Huynh PK, Nguyen D, Binder G, Ambardar S, Le TQ, Voronine DV. Multifractality in Surface Potential for Cancer Diagnosis. J Phys Chem B 2023; 127:6867-6877. [PMID: 37525377 DOI: 10.1021/acs.jpcb.3c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Recent advances in high-resolution biomedical imaging have improved cancer diagnosis, focusing on morphological, electrical, and biochemical properties of cells and tissues, scaling from cell clusters down to the molecular level. Multiscale imaging revealed high complexity that requires advanced data processing methods of multifractal analysis. We performed label-free multiscale imaging of surface potential variations in human ovarian cancer cells using Kelvin probe force microscopy (KPFM). An improvement in the differentiation between nonmalignant and cancerous cells by multifractal analysis using adaptive versus median threshold for image binarization was demonstrated. The results reveal the multifractality of cancer cells as a new biomarker for cancer diagnosis.
Collapse
Affiliation(s)
- Phat K Huynh
- Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Grace Binder
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sharad Ambardar
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Trung Q Le
- Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Dmitri V Voronine
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Nanoscale Prognosis of Colorectal Cancer Metastasis from AFM Image Processing of Histological Sections. Cancers (Basel) 2023; 15:cancers15041220. [PMID: 36831563 PMCID: PMC9953928 DOI: 10.3390/cancers15041220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Early ascertainment of metastatic tumour phases is crucial to improve cancer survival, formulate an accurate prognostic report of disease advancement, and, most importantly, quantify the metastatic progression and malignancy state of primary cancer cells with a universal numerical indexing system. This work proposes an early improvement to metastatic cancer detection with 97.7 nm spatial resolution by indexing the metastatic cancer phases from the analysis of atomic force microscopy images of human colorectal cancer histological sections. The procedure applies variograms of residuals of Gaussian filtering and theta statistics of colorectal cancer tissue image settings. This methodology elucidates the early metastatic progression at the nanoscale level by setting metastatic indexes and critical thresholds based on relatively large histological sections and categorising the malignancy state of a few suspicious cells not identified with optical image analysis. In addition, we sought to detect early tiny morphological differentiations indicating potential cell transition from epithelial cell phenotypes of low metastatic potential to those of high metastatic potential. This metastatic differentiation, which is also identified in higher moments of variograms, sets different hierarchical levels for metastatic progression dynamics.
Collapse
|