1
|
Zhang SH, Su Y, Zheng M, Zeng N, Sun JX, Xu JZ, Liu CQ, Wang SG, Zhou Y, Xia QD. Design, synthesis and biological evaluation of dual inhibitors targeting AR/AR-Vs and PARP1 in castration resistant prostate cancer therapy. Biomed Pharmacother 2024; 180:117485. [PMID: 39326103 DOI: 10.1016/j.biopha.2024.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
The combination of androgen signaling inhibitors and PARP inhibitors has shown promising results in clinical trials for the treatment of castration-resistant prostate cancer (CRPC). Multi-target inhibitors can inhibit tumors through different pathways, addressing the limitations of traditional single target inhibitors. We designed and synthesized dual inhibitors targeting AR/AR-Vs and PARP1 using a pharmacophore hybridization strategy. The most potent compound, II-3, inhibits AR/AR-Vs signaling and induces DNA damage by inhibiting PARP1. The IC50 values of II-3 in the castration-resistant prostate cancer cell lines 22RV1 and C4-2 are 4.38 ± 0.56 µM, and 3.44 ± 0.63 µM, respectively. II-3 not only suppresses the proliferation and migration of 22RV1 and C4-2 cells, but also promotes their apoptosis. Intraperitoneal injection of II-3 effectively inhibits tumor growth in 22RV1 xenograft nude mice without evident drug-induced toxicity. Overall, a series of novel dual inhibitors targeting AR/AR-Vs and PARP1 were designed and synthesized, and meanwhile the in vivo and in vitro effects were comprehensively explored, which provided a potential new therapeutic strategy for CRPC.
Collapse
Affiliation(s)
- Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yaowu Su
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
2
|
Chen Y, Lan T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front Pharmacol 2024; 15:1451957. [PMID: 39359255 PMCID: PMC11444995 DOI: 10.3389/fphar.2024.1451957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
The incidence rate of prostate cancer (PCa) has risen by 3% per year from 2014 through 2019 in the United States. An estimated 34,700 people will die from PCa in 2023, corresponding to 95 deaths per day. Castration resistant prostate cancer (CRPC) is the leading cause of deaths among men with PCa. Androgen receptor (AR) plays a critical role in the development of CRPC. N-terminal domain (NTD) is the essential functional domain for AR transcriptional activation, in which modular activation function-1 (AF-1) is important for gene regulation and protein interactions. Over last 2 decades drug discovery against NTD has attracted interest for CRPC treatment. However, NTD is an intrinsically disordered domain without stable three-dimensional structure, which has so far hampered the development of drugs targeting this highly dynamic structure. Employing high throughput cell-based assays, small-molecule NTD inhibitors exhibit a variety of unexpected properties, ranging from specific binding to NTD, blocking AR transactivation, and suppressing oncogenic proliferation, which prompts its evaluation in clinical trials. Furthermore, molecular dynamics simulations reveal that compounds can induce the formation of collapsed helical states. Nevertheless, our knowledge of NTD structure has been limited to the primary sequence of amino acid chain and a few secondary structure motif, acting as a barrier for computational and pharmaceutical analysis to decipher dynamic conformation and drug-target interaction. In this review, we provide an overview on the sequence-structure-function relationships of NTD, including the polymorphism of mono-amino acid repeats, functional elements for transcription regulation, and modeled tertiary structure of NTD. Moreover, we summarize the activities and therapeutic potential of current NTD-targeting inhibitors and outline different experimental methods contributing to screening novel compounds. Finally, we discuss current directions for structure-based drug design and potential breakthroughs for exploring pharmacological motifs and pockets in NTD, which could contribute to the discovery of new NTD inhibitors.
Collapse
Affiliation(s)
- Ye Chen
- Department of Anesthesiology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| | - Tian Lan
- Department of Urology, Xi’an International Medical Center Hospital Affiliated To Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Liu M, Xu C, Yang H, Jiang Q, Chen G, Wang W, Shao T, Deng T, Yuan F, Xie P, Zhou H. Pro-oncogene FBI-1 inhibits the ferroptosis of prostate carcinoma PC-3 cells via the microRNA-324-3p/GPX4 axis. J Cancer 2024; 15:4097-4112. [PMID: 38947389 PMCID: PMC11212100 DOI: 10.7150/jca.96306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Ferroptosis has been characterized as non-apoptotic programmed cell death and is considered a novel strategy for antitumor treatment. The factor that binds to inducer of short transcripts-1 (FBI-1) is an important proto-oncogene playing multiple roles in human malignancies and the development of resistance to therapy. However, the roles of FBI-1 in ferroptosis of endocrine independent prostate carcinoma are still unknown. The results of this study showed that FBI-1 inhibited the ferroptosis of prostate carcinoma PC-3 cells (a typical endocrine-independent prostate carcinoma cell line) via the miR-324-3p/glutathione peroxidase 4 (miR-324-3p/GPX4) axis. Overexpression of FBI-1 enhanced the expression levels of GPX4. In contrast, knockdown of FBI-1 decreased the expression of GPX4 and induced the ferroptosis of PC-3 cells. The miR-324-3p decreased the expression of GPX4 by targeting the 3'-untranslated region of GPX4 to induce ferroptosis. Notably, FBI-1 increased the expression of GPX4 by repressing the levels of miR-324-3p. The transcription of miR-324-3p was mediated by specificity protein 1 (SP1), and FBI-1 repressed the expression of miR-324-3p by repressing the activation of SP1. In clinical specimens, the endogenous levels of FBI-1 were positively associated with Glutathione Peroxidase 4 (GPX4) and negatively related with the expression of miR-324-3p. Therefore, the results indicated that the miR-324-3p/GPX4 axis participates in the FBI-1-mediated ferroptosis of prostate carcinoma cells.
Collapse
Affiliation(s)
- Mingsheng Liu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Chenxiang Xu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Hua Yang
- Department of the Medical Oncology / the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy; the Affiliated Hospital of Hebei University; Baoding City 071000, Hebei province, People's Republic of China
| | - Qiyu Jiang
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Guanyu Chen
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Wei Wang
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Tao Shao
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Tibin Deng
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Fei Yuan
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Pingbo Xie
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Hongqing Zhou
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| |
Collapse
|
4
|
Chan MF, Parikh D, Shi C. Narrative Review: Cardiotoxicities and Cardiac-Sparing Techniques in Radiotherapy. Technol Cancer Res Treat 2024; 23:15330338241301211. [PMID: 39636079 PMCID: PMC11622324 DOI: 10.1177/15330338241301211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
This review article aims to synthesize existing data on radiation-induced heart diseases in patients undergoing chest radiation therapy and also explores cardiac-sparing techniques to mitigate cardiotoxic effects. We conducted a comprehensive database search to review and consolidate data regarding chest radiotherapy and effects on the heart as well as techniques to minimize exposure to the heart. The research findings demonstrate associations between radiation exposure to cardiac substructures and subsequent cardiotoxicity. This review also stresses the importance of identifying patients at high-risk for cardiotoxicity as well as advocates for the adoption of stringent cardiac dose constraints in these patients. Advanced cardiac-sparing techniques, notably respiratory motion management, have emerged as pivotal strategies to minimize the likelihood of cardiac events. This narrative review emphasizes the critical role of these innovations in optimizing cardiac health during radiation treatment.
Collapse
Affiliation(s)
- Maria F. Chan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Basking Ridge, NJ, USA
| | - Dhwani Parikh
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Basking Ridge, NJ, USA
| | - Chengyu Shi
- Department of Radiation Oncology, City of Hope, Irvine, CA, USA
| |
Collapse
|
5
|
Joshi BP, Bhandare VV, Vankawala M, Patel P, Patel R, Vyas B, Krishnamurty R. Friedelin, a novel inhibitor of CYP17A1 in prostate cancer from Cassia tora. J Biomol Struct Dyn 2023; 41:9695-9720. [PMID: 36373336 DOI: 10.1080/07391102.2022.2145497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
In prostate cancer (PC), drugs targeting CYP17A1 have shown great success in regulating PC progression. However, successful drug molecules show adverse side effects and therapeutic resistance in PC. Therefore, we proposed to discover the potent phytochemical-based inhibitor against CYP17A1 using virtual screening. In this study, a phytochemicals library of ∼13800 molecules was selected to screen the best possible inhibitors against CYP17A1. A molecular modelling approach investigated detailed intermolecular interactions, their structural stability, and binding affinity. Further, in vitro and in vivo studies were performed to confirm the anticancer activity of identified potential inhibitor against CYP17A1. Friedelin from Cassia tora (CT) is identified as the best possible inhibitor from the screened library. MD simulation study reveals stable binding of Friedelin to conserved binding pocket of CYP17A1 with higher binding affinity than studied control, that is, Orteronel. Friedelin was tested on hormone-sensitive (22Rv1) and insensitive (DU145) cell lines and the IC50 value was found to be 72.025 and 81.766 µg/ml, respectively. CT extract showed a 25.28% IC50 value against 22Rv1, ∼92.6% increase in late Apoptosis/Necrosis, and three folds decrease in early apoptosis in treated cells compared to untreated cells. Further, animal studies show a marked decrease in prostate weight by 39.6% and prostate index by 36.5%, along with a reduction in serum PSA level by 71.7% and testosterone level by 92.4% compared to the testosterone group, which was further validated with histopathological studies. Thus, we propose Friedelin and CT extract as potential leads, which could be taken further for drug development in PC.[Figure: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mahima Vankawala
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Prittesh Patel
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat, India
| | - Rajesh Patel
- Bioinformatics and Supercomputer Lab., Department of Biosciences (UGC-SAP-DRS-II & DST-FIST-I), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Bhavin Vyas
- Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Surat, Gujarat, India
| | - Ramar Krishnamurty
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat, India
| |
Collapse
|
6
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
7
|
Ferraz RS, Cavalcante JVF, Magalhães L, Ribeiro‐dos‐Santos Â, Dalmolin RJS. Revealing metastatic castration-resistant prostate cancer master regulator through lncRNAs-centered regulatory network. Cancer Med 2023; 12:19279-19290. [PMID: 37644825 PMCID: PMC10557827 DOI: 10.1002/cam4.6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive form of cancer unresponsive to androgen deprivation therapy (ADT) that spreads quickly to other organs. Despite reduced androgen levels after ADT, mCRPC development and lethality continues to be conducted by the androgen receptor (AR) axis. The maintenance of AR signaling in mCRPC is a result of AR alterations, androgen intratumoral production, and the action of regulatory elements, such as noncoding RNAs (ncRNAs). ncRNAs are key elements in cancer signaling, acting in tumor growth, metabolic reprogramming, and tumor progression. In prostate cancer (PCa), the ncRNAs have been reported to be associated with AR expression, PCa proliferation, and castration resistance. In this study, we aimed to reconstruct the lncRNA-centered regulatory network of mCRPC and identify the lncRNAs which act as master regulators (MRs). METHODS We used publicly available RNA-sequencing to infer the regulatory network of lncRNAs in mCRPC. Five gene signatures were employed to conduct the master regulator analysis. Inferred MRs were then subjected to functional enrichment and symbolic regression modeling. The latter approach was applied to identify the lncRNAs with greater predictive capacity and potential as a biomarker in mCRPC. RESULTS We identified 31 lncRNAs involved in cellular proliferation, tumor metabolism, and invasion-metastasis cascade. SNHG18 and HELLPAR were the highlights of our results. SNHG18 was downregulated in mCRPC and enriched to metastasis signatures. It accurately distinguished both mCRPC and primary CRPC from normal tissue and was associated with epithelial-mesenchymal transition (EMT) and cell-matrix adhesion pathways. HELLPAR consistently distinguished mCRPC from primary CRPC and normal tissue using only its expression. CONCLUSION Our results contribute to understanding the regulatory behavior of lncRNAs in mCRPC and indicate SNHG18 and HELLPAR as master regulators and potential new diagnostic targets in this tumor.
Collapse
Affiliation(s)
- Rafaella Sousa Ferraz
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | | | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | - Ândrea Ribeiro‐dos‐Santos
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | | |
Collapse
|
8
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
9
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
10
|
Kim W, Yeo DY, Choi SK, Kim HY, Lee SW, Ashim J, Han JE, Yu W, Jeong H, Park JK, Park S. NOLC1 knockdown suppresses prostate cancer progressions by reducing AKT phosphorylation and β-catenin accumulation. Biochem Biophys Res Commun 2022; 635:99-107. [DOI: 10.1016/j.bbrc.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|