1
|
Röhsig LM, Nardi NB. Impact of COVID-19 pandemic on cord blood banking and transplantation. Cell Tissue Bank 2024; 25:605-611. [PMID: 38168846 DOI: 10.1007/s10561-023-10122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Umbilical cord blood is a rich source of hematopoietic stem cells that has been used for transplantation for over 30 years, especially when there is no compatible hematopoietic stem cell donor available. Its use has decreased more recently, since the development of methods to improve haploidentical transplants has allowed the use of mobilized peripheral blood as a source of hematopoietic stem cells. Public cord blood banks collect, process and store cord blood samples from voluntary donations. In addition, many public banks are involved in research to enhance hematopoietic stem cell therapies and develop new treatments for haematological and genetic diseases. The COVID-19 pandemic, which emerged in 2019, has had a profound and wide-ranging impact on human health and treatment. The area of hematopoietic stem cell transplantation was deeply affected by reductions in bone marrow, peripheral blood and cord blood donations; logistical challenges; exposure of healthcare workers and other challenges. The present study reviews the impact of the COVID-19 pandemic on cord blood banking and transportation around the world with a special focus on Brazil.
Collapse
Affiliation(s)
- Liane Marise Röhsig
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil
- Unit of Cellular Processing Center, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Yue Y, Zi M, Feng J, Wang W, Ren Z, Wu C, Yang Z. Efficacy of nature killer cell combination chemotherapy for post-radical gastric cancer metastases: Case report. SAGE Open Med Case Rep 2024; 12:2050313X241254743. [PMID: 38803362 PMCID: PMC11129568 DOI: 10.1177/2050313x241254743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Nature killer cell therapy has shown strong efficacy in the field of oncology in recent years and has been applied to patients with metastases with the aim of improving the prognosis of advanced gastric cancer. A 59-year-old male with gastric adenocarcinoma with pancreatic metastasis (T4N0M1) who underwent radical surgery for gastric cancer with tumor metastasis was treated with oxaliplatin and tegafur combined with cellular reinfusion in stages. Computed tomograpy scan and serum tumor markers were monitored continuously after the treatment course. After five courses of combined treatment, the patient was in disease control with no significant side effects. At the last follow-up, the alpha fetoprotein had returned to its normal value with a poor display of low-density shadows in the body of the pancreas. Pancreatic cancer is insidious in origin and has a high mortality rate. The report provides clinical evidence for cell therapy of pancreatic metastatic cancer with improved quality of life.
Collapse
Affiliation(s)
- Yongting Yue
- North China University of Science and Technology, Tangshan, China
| | - Mengmeng Zi
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jianing Feng
- North China University of Science and Technology, Tangshan, China
| | - Wenbang Wang
- North China University of Science and Technology, Tangshan, China
| | - Zhaoqi Ren
- Department of Transfusion Medicine, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chuntao Wu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
4
|
de Jonge PKJD, van Hauten PMM, Janssen LD, de Goede AL, Berrien-Elliott MM, van der Meer JMR, Mousset CM, Roeven MWH, Foster M, Blijlevens N, Hobo W, Fehniger TA, Jansen JH, Schaap NPM, Dolstra H. Good manufacturing practice production of CD34 + progenitor-derived NK cells for adoptive immunotherapy in acute myeloid leukemia. Cancer Immunol Immunother 2023; 72:3323-3335. [PMID: 37477653 PMCID: PMC10491545 DOI: 10.1007/s00262-023-03492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Allogeneic natural killer (NK) cell-based immunotherapy is a promising, well-tolerated adjuvant therapeutic approach for acute myeloid leukemia (AML). For reproducible NK cell immunotherapy, a homogenous, pure and scalable NK cell product is preferred. Therefore, we developed a good manufacturing practice (GMP)-compliant, cytokine-based ex vivo manufacturing process for generating NK cells from CD34+ hematopoietic stem and progenitor cells (HSPC). This manufacturing process combines amongst others IL15 and IL12 and the aryl hydrocarbon receptor antagonist StemRegenin-1 (SR1) to generate a consistent and active NK cell product that fits the requirements for NK cell immunotherapy well. The cell culture protocol was first optimized to generate NK cells with required expansion and differentiation capacity in GMP-compliant closed system cell culture bags. In addition, phenotype, antitumor potency, proliferative and metabolic capacity were evaluated to characterize the HSPC-NK product. Subsequently, seven batches were manufactured for qualification of the process. All seven runs demonstrated consistent results for proliferation, differentiation and antitumor potency, and preliminary specifications for the investigational medicinal product for early clinical phase trials were set. This GMP-compliant manufacturing process for HSPC-NK cells (named RNK001 cells) is used to produce NK cell batches applied in the clinical trial 'Infusion of ex vivo-generated allogeneic natural killer cells in combination with subcutaneous IL2 in patients with acute myeloid leukemia' approved by the Dutch Ethics Committee (EudraCT 2019-001929-27).
Collapse
Affiliation(s)
- P K J D de Jonge
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - P M M van Hauten
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L D Janssen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - A L de Goede
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - J M R van der Meer
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - C M Mousset
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M W H Roeven
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Foster
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - N Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - T A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - J H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - N P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Mu Y, Tong J, Wang Y, Yang Y, Wu X. Case Report: Cord blood-derived natural killer cells as new potential immunotherapy drug for solid tumor: a case study for endometrial cancer. Front Immunol 2023; 14:1213161. [PMID: 37457710 PMCID: PMC10348479 DOI: 10.3389/fimmu.2023.1213161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Adoptive transfer of natural killer (NK) cells represents a viable treatment method for patients with advanced malignancies. Our team previously developed a simple, safe, and cost-effective method for obtaining high yields of pure and functional NK cells from cord blood (CB) without the need for cell sorting, feeder cells, or multiple cytokines. We present the case of a 52-year-old female patient diagnosed with poorly differentiated stage IVB (T3N2M1) endometrial cancer, who exhibited leukemoid reaction and pretreatment thrombocytosis as paraneoplastic syndromes. The patient received two courses of CB-derived NK (CB-NK) cell immunotherapy between March and September 2022, due to her extremely low NK cell activity. Two available CB units matched at 8/10 HLA with KIR-mismatch were chosen, and we were able to produce NK cells with high yield (>1.0×1010 NK cells), purity (>90%), and function (>80%) from CB without cell sorting, feeder cells, or multiple cytokines. These cells were then adoptively transferred to the patient. No adverse effects or graft-versus-host disease were observed after infusion of CB-NK cells. Our clinical experience supports the efficacy of CB-NK cell treatment in increasing NK cell activity, depleting tumor activity, improving quality of life, and reducing the size of abdominal and pelvic masses with the disappearance of multiple lymph node metastases through the regulation of systemic antitumor immunity. Remarkably, the white blood cell and platelet counts decreased to normal levels after CB-NK cell immunotherapy. This clinical work suggests that CB-NK cell immunotherapy holds promise as a therapeutic approach for endometrial cancer.
Collapse
Affiliation(s)
- Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jiabei Tong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yujun Wang
- Department of Technology, Beijing Stem Cell(ProterCell) Biotechnology Co., Ltd., Beijing, China
| | - Yuxiao Yang
- Department of Technology, Inner Mongolia Stem Cell(ProterCell) Biotechnology Co., Ltd., Hohhot, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
| | - Xiaoyun Wu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Technology, Beijing Stem Cell(ProterCell) Biotechnology Co., Ltd., Beijing, China
- Department of Technology, Inner Mongolia Stem Cell(ProterCell) Biotechnology Co., Ltd., Hohhot, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
7
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Qin H, You C, Yan F, Tan K, Xu C, Zhao R, Ekpo MD, Tan S. Overcoming the challenges in translational development of natural killer cell therapeutics: An opinion paper. Front Oncol 2022; 12:1062765. [DOI: 10.3389/fonc.2022.1062765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
|