1
|
Wang B, Zhao F, Zhou Z, Wang J, Huang XH, Qin L. The effect mechanism of different natural spices on the formation of associated hazardous compounds in roasted chicken. Food Chem 2025; 474:143170. [PMID: 39921977 DOI: 10.1016/j.foodchem.2025.143170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Exploring the interaction mechanism between the key components in spices and the hazardous compounds in thermally processed foods will help in improving the safety level of processed foods, which is of great significance to the food field. This paper investigated the inhibitory regularities and mechanisms of 6 natural spices on 15 associated hazardous compounds in the chicken. Dried ginger and black pepper had the best inhibitory effects, dried ginger had inhibitory effects on 13 hazardous compounds, and the average inhibition rate ranged from 20.04 % to 100 %. Black pepper could inhibit the formation of 15 hazardous compounds, with the average inhibition rate ranging from 3.10 % to 100 %. Such research results will help to develop natural inhibitors of hazardous compounds and improve the quality of roast chicken.
Collapse
Affiliation(s)
- Bo Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Feng Zhao
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Zhou
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ji Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Kasprowicz A, Cavdarli S, Delannoy P, Le Guezennec X, Defebvre C, Spriet C, Jonckheere N, Le Doussal JM, Krzewinski-Recchi MA, Mitra S, Meignan S, Groux-Degroote S. Anti-OAcGD2 antibody in combination with ceramide kinase inhibitor mediates potent antitumor cytotoxicity against breast cancer and diffuse intrinsic pontine glioma cells. Mol Cell Biochem 2024:10.1007/s11010-024-05127-5. [PMID: 39395135 DOI: 10.1007/s11010-024-05127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
O-acetylated GD2 (OAcGD2) is a cancer-related antigen that is currently being explored for therapeutic use. Exploring the intricate mechanisms behind OAcGD2 synthesis in cancer cells has long been a challenge. Leveraging state-of-the-art high-throughput RNAi screening and confocal imaging technologies, our study delves into the genetic network orchestrating OAcGD2 synthesis in breast cancer cells. By conducting a comprehensive siRNA screen targeting the OAcGD2 phosphatome/kinome, we identified 43 genetic modulators, with 25 downregulating and 18 upregulating OAcGD2 synthesis. Among these, our study focused on CERK, the gene-encoding ceramide kinase, a pivotal player in glycosphingolipid metabolism. Through meticulous experimentation utilizing anti-CERK inhibitor and siRNAs, we made a significant discovery: CERK inhibition robustly upregulates OAcGD2 in both neuroblastoma and breast cancer cells, concurrently dampening cell migration. Furthermore, our findings highlight an exciting prospect: augmenting the antibody-dependent cell cytotoxicity of the chimeric human/mouse anti-OAcGD2 IgG1 monoclonal antibody (c8B6 mAb) against breast cancer and diffuse intrinsic pontine glioma cell lines in combination with specific CERK inhibitors. These results underscore the pivotal role of CERK inhibition in bolstering OAcGD2 synthesis, thus, presenting a promising strategy to increase the efficacy of anti-OAcGD2-based immunotherapy in patients with neuroectodermal tumors. By shedding light on this intricate interplay, our study paves the way for innovative therapeutic strategies poised to revolutionize the treatment landscape for these aggressive malignancies.
Collapse
Affiliation(s)
- Angelina Kasprowicz
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycosbiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
- OGD2Pharma, Institut de Recherche en Santé IRS2 - Nantes Biotech, Boulevard Benoni Goullin, 44200, Nantes, France
| | - Sumeyye Cavdarli
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycosbiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - Philippe Delannoy
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycosbiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - Xavier Le Guezennec
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clémence Defebvre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000, Lille, France
| | - Corentin Spriet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, 59000, Lille, France
| | - Nicolas Jonckheere
- Univ Lille, CNRS, Inserm, CHU Lille, Institut de Recherche Contre Le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Jean-Marc Le Doussal
- OGD2Pharma, Institut de Recherche en Santé IRS2 - Nantes Biotech, Boulevard Benoni Goullin, 44200, Nantes, France
| | - Marie-Ange Krzewinski-Recchi
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycosbiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - Suman Mitra
- Univ Lille, CNRS, Inserm, CHU Lille, Institut de Recherche Contre Le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Samuel Meignan
- Univ Lille, CNRS, Inserm, CHU Lille, Institut de Recherche Contre Le Cancer de Lille, UMR9020 - UMR-S 1277 - Canther Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, 59000, Lille, France
| | - Sophie Groux-Degroote
- Univ Lille, CNRS, UMR 8576 - UGSF - Unité de Glycosbiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
3
|
Qiao J, Xu M, Xu F, Che Z, Han P, Dai X, Miao N, Zhu M. Identification of SNPs and Candidate Genes Associated with Monocyte/Lymphocyte Ratio and Neutrophil/Lymphocyte Ratio in Duroc × Erhualian F 2 Population. Int J Mol Sci 2024; 25:9745. [PMID: 39273692 PMCID: PMC11396299 DOI: 10.3390/ijms25179745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the pig immune function is crucial for disease-resistant breeding and potentially for human health research due to shared immune system features. Immune cell ratios, like monocyte/lymphocyte ratio (MLR) and neutrophil/lymphocyte ratio (NLR), offer a more comprehensive view of immune status compared to individual cell counts. However, research on pig immune cell ratios remains limited. This study investigated MLR and NLR in a Duroc × Erhualian F2 resource population. Heritability analysis revealed high values (0.649 and 0.688 for MLR and NLR, respectively), suggesting a strong genetic component. Furthermore, we employed an ensemble-like GWAS (E-GWAS) strategy and functional annotation analysis to identify 11 MLR-associated and 6 NLR-associated candidate genes. These genes were significantly enriched in immune-related biological processes. These findings provide novel genetic markers and candidate genes associated with porcine immunity, thereby providing valuable insights for addressing biosecurity and animal welfare concerns in the pig industry.
Collapse
Affiliation(s)
- Jiakun Qiao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Minghang Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangjun Xu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxuan Che
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyu Dai
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Miao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Yadav P, Rana K, Chakraborty R, Khan A, Mehta D, Jain D, Aggarwal B, Jha SK, Dasgupta U, Bajaj A. Engineered nanomicelles targeting proliferation and angiogenesis inhibit tumour progression by impairing the synthesis of ceramide-1-phosphate. NANOSCALE 2024; 16:10350-10365. [PMID: 38739006 DOI: 10.1039/d3nr04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
5
|
Akompong SK, Li Y, Gong W, Ye L, Liu J. Recently reported cell migration inhibitors: Opportunities and challenges for antimetastatic agents. Drug Discov Today 2024; 29:103906. [PMID: 38309689 DOI: 10.1016/j.drudis.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Antimetastatic agents are highly desirable for cancer treatment because of the severe medical challenges and high mortality resulting from tumor metastasis. Having demonstrated antimetastatic effects in numerous in vitro and in vivo studies, migration inhibitors present significant opportunities for developing a new class of anticancer drugs. To provide a useful overview on the latest research in migration inhibitors, this article first discusses their therapeutic significance, targetable proteins, and developmental avenues. Subsequently it reviews over 20 representative migration inhibitors reported in recent journals in terms of their inhibitory mechanism, potency, and potential clinical utility. The relevance of the target proteins to cellular migratory function is focused on as it is crucial for assessing the overall efficacy of the inhibitors.
Collapse
Affiliation(s)
- Samuel K Akompong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Li
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenxue Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Long Ye
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinping Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Hengst JA, Nduwumwami AJ, Sharma A, Yun JK. Fanning the Flames of Endoplasmic Reticulum (ER) Stress: Can Sphingolipid Metabolism Be Targeted to Enhance ER Stress-Associated Immunogenic Cell Death in Cancer? Mol Pharmacol 2024; 105:155-165. [PMID: 38164594 PMCID: PMC10877730 DOI: 10.1124/molpharm.123.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress. Given that sphingolipids have both prosurvival and proapoptotic effects, they also exert opposing effects on life/death decisions in the face of prolonged ER stress detected by the UPR. In this review, we will focus on several recent studies that demonstrate how sphingolipids affect each arm of the UPR. We will also discuss the role of sphingolipids in the process of immunogenic cell death downstream of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiating factor 2α (eIF2α) arm of the UPR. Furthermore, we will discuss strategies to target the sphingolipid metabolic pathway that could potentially act synergistically with agents that induce ER stress as novel anticancer treatments. SIGNIFICANCE STATEMENT: This review provides the readers with a brief discussion of the sphingolipid metabolic pathway and the unfolded protein response. The primary focus of the review is the mechanism(s) by which sphingolipids modulate the endoplasmic reticulum (ER) stress response pathways and the critical role of sphingolipids in the process of immunogenic cell death associated with the ER stress response.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Asvelt J Nduwumwami
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Arati Sharma
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Jong K Yun
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| |
Collapse
|
7
|
Codini M, Fiorani F, Mandarano M, Cataldi S, Arcuri C, Mirarchi A, Ceccarini MR, Beccari T, Kobayashi T, Tomishige N, Sidoni A, Albi E. Sphingomyelin Metabolism Modifies Luminal A Breast Cancer Cell Line under a High Dose of Vitamin C. Int J Mol Sci 2023; 24:17263. [PMID: 38139092 PMCID: PMC10743617 DOI: 10.3390/ijms242417263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Federico Fiorani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Cataldo Arcuri
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Alessandra Mirarchi
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Nario Tomishige
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| |
Collapse
|
8
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Li C, Wang F, Cui L, Li S, Zhao J, Liao L. Association between abnormal lipid metabolism and tumor. Front Endocrinol (Lausanne) 2023; 14:1134154. [PMID: 37305043 PMCID: PMC10248433 DOI: 10.3389/fendo.2023.1134154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Metabolic Reprogramming is a sign of tumor, and as one of the three major substances metabolism, lipid has an obvious impact. Abnormal lipid metabolism is related to the occurrence of various diseases, and the proportion of people with abnormal lipid metabolism is increasing year by year. Lipid metabolism is involved in the occurrence, development, invasion, and metastasis of tumors by regulating various oncogenic signal pathways. The differences in lipid metabolism among different tumors are related to various factors such as tumor origin, regulation of lipid metabolism pathways, and diet. This article reviews the synthesis and regulatory pathways of lipids, as well as the research progress on cholesterol, triglycerides, sphingolipids, lipid related lipid rafts, adipocytes, lipid droplets, and lipid-lowering drugs in relation to tumors and their drug resistance. It also points out the limitations of current research and potential tumor treatment targets and drugs in the lipid metabolism pathway. Research and intervention on lipid metabolism abnormalities may provide new ideas for the treatment and survival prognosis of tumors.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Fei Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lili Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Shaoxin Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Corsetto PA, Zava S, Rizzo AM, Colombo I. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response. Int J Mol Sci 2023; 24:ijms24032107. [PMID: 36768427 PMCID: PMC9916652 DOI: 10.3390/ijms24032107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.
Collapse
|
11
|
Kar A, Medatwal N, Rajput K, Mandal S, Pani T, Khan A, Sharma P, Oberoi AS, Vishwakarma G, Deo S, Jolly MK, Bajaj A, Dasgupta U. Unique sphingolipid signature identifies luminal and triple-negative breast cancer subtypes. Int J Cancer 2023; 152:2410-2423. [PMID: 36602287 DOI: 10.1002/ijc.34423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Breast cancer (luminal and triple-negative breast cancer [TNBC]) is the most common cancer among women in India and worldwide. Altered sphingolipid levels have emerged as a common phenomenon during cancer progression. However, these alterations are yet to be translated into robust diagnostic and prognostic markers for cancer. Here, we present the quantified sphingolipids of tumor and adjacent-normal tissues from patients of luminal (n = 70) and TNBC (n = 42) subtype from an Indian cohort using targeted liquid chromatography mass spectrometry. We recorded unique sphingolipid profiles that distinguished luminal and TNBC tumors in comparison to adjacent normal tissue by six-sphingolipid signatures. Moreover, systematic comparison of the profiles of luminal and TNBC tumors provided a unique five-sphingolipid signature distinguishing the two subtypes. We further identified key sphingolipids that can stratify grade II and grade III tumors of luminal and TNBC subtype as well as their lymphovascular invasion status. Therefore, we provide the right evidence to develop these candidate sphingolipids as widely acceptable marker/s capable of diagnosing luminal vs TNBC subtype of breast cancer, and predicting the disease severity by identifying the tumor grade.
Collapse
Affiliation(s)
- Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nihal Medatwal
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Kajal Rajput
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Trishna Pani
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Pankaj Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| | - Ajit Singh Oberoi
- Department of Surgical Oncology, BRA-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Indian Spinal Injuries Centre, New Delhi, India.,The George Institute of Global Health, New Delhi, India
| | - Svs Deo
- Department of Surgical Oncology, BRA-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, Haryana, India
| |
Collapse
|