1
|
Kelley-Jones C, Scott SE, Waller J. Acceptability of de-intensified screening for women at low risk of breast cancer: a randomised online experimental survey. BMC Cancer 2024; 24:1111. [PMID: 39243000 PMCID: PMC11378402 DOI: 10.1186/s12885-024-12847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Risk-stratified approaches to breast screening show promise for increasing benefits and reducing harms. But the successful implementation of such an approach will rely on public acceptability. To date, research suggests that while increased screening for women at high risk will be acceptable, any de-intensification of screening for low-risk groups may be met with less enthusiasm. We report findings from a population-based survey of women in England, approaching the age of eligibility for breast screening, to compare the acceptability of current age-based screening with two hypothetical risk-adapted approaches for women at low risk of breast cancer. METHODS An online survey of 1,579 women aged 40-49 with no personal experience of breast cancer or mammography. Participants were recruited via a market research panel, using target quotas for educational attainment and ethnic group, and were randomised to view information about (1) standard NHS age-based screening; (2) a later screening start age for low-risk women; or (3) a longer screening interval for low-risk women. Primary outcomes were cognitive, emotional, and global acceptability. ANOVAs and multiple regression were used to compare acceptability between groups and explore demographic and psychosocial factors associated with acceptability. RESULTS All three screening approaches were judged to be acceptable on the single-item measure of global acceptability (mean score > 3 on a 5-point scale). Scores for all three measures of acceptability were significantly lower for the risk-adapted scenarios than for age-based screening. There were no differences between the two risk-adapted scenarios. In multivariable analysis, higher breast cancer knowledge was positively associated with cognitive and emotional acceptability of screening approach. Willingness to undergo personal risk assessment was not associated with experimental group. CONCLUSION We found no difference in the acceptability of later start age vs. longer screening intervals for women at low risk of breast cancer in a large sample of women who were screening naïve. Although acceptability of both risk-adapted scenarios was lower than for standard age-based screening, overall acceptability was reasonable. The positive associations between knowledge and both cognitive and emotional acceptability suggests clear and reassuring communication about the rationale for de-intensified screening may enhance acceptability.
Collapse
Affiliation(s)
- Charlotte Kelley-Jones
- Cancer Prevention Group, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, Great Maze Pond, London, SE1 1UL, UK.
- c/o Professor J. Waller, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Suzanne E Scott
- Cancer Prevention Group, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, Great Maze Pond, London, SE1 1UL, UK
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jo Waller
- Cancer Prevention Group, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, Great Maze Pond, London, SE1 1UL, UK
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
2
|
Hill H, Roadevin C, Duffy S, Mandrik O, Brentnall A. Cost-Effectiveness of AI for Risk-Stratified Breast Cancer Screening. JAMA Netw Open 2024; 7:e2431715. [PMID: 39235813 PMCID: PMC11377997 DOI: 10.1001/jamanetworkopen.2024.31715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance Previous research has shown good discrimination of short-term risk using an artificial intelligence (AI) risk prediction model (Mirai). However, no studies have been undertaken to evaluate whether this might translate into economic gains. Objective To assess the cost-effectiveness of incorporating risk-stratified screening using a breast cancer AI model into the United Kingdom (UK) National Breast Cancer Screening Program. Design, Setting, and Participants This study, conducted from January 1, 2023, to January 31, 2024, involved the development of a decision analytical model to estimate health-related quality of life, cancer survival rates, and costs over the lifetime of the female population eligible for screening. The analysis took a UK payer perspective, and the simulated cohort consisted of women aged 50 to 70 years at screening. Exposures Mammography screening at 1 to 6 yearly screening intervals based on breast cancer risk and standard care (screening every 3 years). Main Outcomes and Measures Incremental net monetary benefit based on quality-adjusted life-years (QALYs) and National Health Service (NHS) costs (given in pounds sterling; to convert to US dollars, multiply by 1.28). Results Artificial intelligence-based risk-stratified programs were estimated to be cost-saving and increase QALYs compared with the current screening program. A screening schedule of every 6 years for lowest-risk individuals, biannually and triennially for those below and above average risk, respectively, and annually for those at highest risk was estimated to give yearly net monetary benefits within the NHS of approximately £60.4 (US $77.3) million and £85.3 (US $109.2) million, with QALY values set at £20 000 (US $25 600) and £30 000 (US $38 400), respectively. Even in scenarios where decision-makers hesitate to allocate additional NHS resources toward screening, implementing the proposed strategies at a QALY value of £1 (US $1.28) was estimated to generate a yearly monetary benefit of approximately £10.6 (US $13.6) million. Conclusions and Relevance In this decision analytical model study of integrating risk-stratified screening with a breast cancer AI model into the UK National Breast Cancer Screening Program, risk-stratified screening was likely to be cost-effective, yielding added health benefits at reduced costs. These results are particularly relevant for health care settings where resources are under pressure. New studies to prospectively evaluate AI-guided screening appear warranted.
Collapse
Affiliation(s)
- Harry Hill
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Cristina Roadevin
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Duffy
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Olena Mandrik
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Adam Brentnall
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Wright SJ, Gray E, Rogers G, Donten A, Payne K. A structured process for the validation of a decision-analytic model: application to a cost-effectiveness model for risk-stratified national breast screening. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024; 22:527-542. [PMID: 38755403 PMCID: PMC11178649 DOI: 10.1007/s40258-024-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Decision-makers require knowledge of the strengths and weaknesses of decision-analytic models used to evaluate healthcare interventions to be able to confidently use the results of such models to inform policy. A number of aspects of model validity have previously been described, but no systematic approach to assessing the validity of a model has been proposed. This study aimed to consolidate the different aspects of model validity into a step-by-step approach to assessing the strengths and weaknesses of a decision-analytic model. METHODS A pre-defined set of steps were used to conduct the validation process of an exemplar early decision-analytic-model-based cost-effectiveness analysis of a risk-stratified national breast cancer screening programme [UK healthcare perspective; lifetime horizon; costs (£; 2021)]. Internal validation was assessed in terms of descriptive validity, technical validity and face validity. External validation was assessed in terms of operational validation, convergent validity (or corroboration) and predictive validity. RESULTS The results outline the findings of each step of internal and external validation of the early decision-analytic-model and present the validated model (called 'MANC-RISK-SCREEN'). The positive aspects in terms of meeting internal validation requirements are shown together with the remaining limitations of MANC-RISK-SCREEN. CONCLUSION Following a transparent and structured validation process, MANC-RISK-SCREEN has been shown to have satisfactory internal and external validity for use in informing resource allocation decision-making. We suggest that MANC-RISK-SCREEN can be used to assess the cost-effectiveness of exemplars of risk-stratified national breast cancer screening programmes (NBSP) from the UK perspective. IMPLICATIONS A step-by-step process for conducting the validation of a decision-analytic model was developed for future use by health economists. Using this approach may help researchers to fully demonstrate the strengths and limitations of their model to decision-makers.
Collapse
Affiliation(s)
- Stuart J Wright
- Division of Population Health, Health Services Research and Primary Care, Manchester Centre for Health Economics, The University of Manchester, Oxford Road, Manchester, M139PL, UK.
| | - Ewan Gray
- GRAIL, New Penderel House 4th Floor, 283-288 High Holborn, London, WC1V 7HP, UK
| | - Gabriel Rogers
- Division of Population Health, Health Services Research and Primary Care, Manchester Centre for Health Economics, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Anna Donten
- Division of Population Health, Health Services Research and Primary Care, Manchester Centre for Health Economics, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Katherine Payne
- Division of Population Health, Health Services Research and Primary Care, Manchester Centre for Health Economics, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| |
Collapse
|
4
|
Dannhauser FC, Taylor LC, Tung JSL, Usher-Smith JA. The acceptability and clinical impact of using polygenic scores for risk-estimation of common cancers in primary care: a systematic review. J Community Genet 2024; 15:217-234. [PMID: 38769249 PMCID: PMC11217210 DOI: 10.1007/s12687-024-00709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Polygenic scores (PGS) have been developed for cancer risk-estimation and show potential as tools to prompt earlier referral for high-risk individuals and aid risk-stratification within cancer screening programmes. This review explores the potential for using PGS to identify individuals at risk of the most common cancers seen in primary care. METHODS Two electronic databases were searched up until November 2023 to identify quantitative, qualitative, and mixed methods studies that reported on the acceptability and clinical impact of using PGS to identify individuals at highest risk of breast, prostate, colorectal and lung cancer in primary care. The Mixed Methods Appraisal Tool (MMAT) was used to assess the quality of included studies and a narrative synthesis was used to analyse data. RESULTS A total of 190 papers were identified, 18 of which were eligible for inclusion. A cancer risk-assessment tool incorporating PGS was acceptable to the general practice population and their healthcare providers but major challenges to implementation were identified, including lack of evidence for PGS in non-European ancestry and a need for healthcare provider education in genomic medicine. A PGS cancer risk-assessment had relatively limited impact on psychosocial outcomes and health behaviours. However, for prostate cancer, potential applications for its use in primary care were shown. CONCLUSIONS Cancer risk assessment incorporating PGS in primary care is acceptable to patients and healthcare providers but there is a paucity of research exploring clinical impact. Few studies were identified, and more research is required before clinical implementation of PGS can be recommended.
Collapse
Affiliation(s)
| | - Lily C Taylor
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Joanna S L Tung
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Juliet A Usher-Smith
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, England.
| |
Collapse
|
5
|
Walker MJ, Blackmore KM, Chang A, Lambert-Côté L, Turgeon A, Antoniou AC, Bell KA, Broeders MJM, Brooks JD, Carver T, Chiquette J, Després P, Easton DF, Eisen A, Eloy L, Evans DG, Fienberg S, Joly Y, Kim RH, Kim SJ, Knoppers BM, Lofters AK, Nabi H, Paquette JS, Pashayan N, Sheppard AJ, Stockley TL, Dorval M, Simard J, Chiarelli AM. Implementing Multifactorial Risk Assessment with Polygenic Risk Scores for Personalized Breast Cancer Screening in the Population Setting: Challenges and Opportunities. Cancers (Basel) 2024; 16:2116. [PMID: 38893236 PMCID: PMC11171515 DOI: 10.3390/cancers16112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Risk-stratified breast screening has been proposed as a strategy to overcome the limitations of age-based screening. A prospective cohort study was undertaken within the PERSPECTIVE I&I project, which will generate the first Canadian evidence on multifactorial breast cancer risk assessment in the population setting to inform the implementation of risk-stratified screening. Recruited females aged 40-69 unaffected by breast cancer, with a previous mammogram, underwent multifactorial breast cancer risk assessment. The adoption of multifactorial risk assessment, the effectiveness of methods for collecting risk factor information and the costs of risk assessment were examined. Associations between participant characteristics and study sites, as well as data collection methods, were assessed using logistic regression; all p-values are two-sided. Of the 4246 participants recruited, 88.4% completed a risk assessment, with 79.8%, 15.7% and 4.4% estimated at average, higher than average and high risk, respectively. The total per-participant cost for risk assessment was CAD 315. Participants who chose to provide risk factor information on paper/telephone (27.2%) vs. online were more likely to be older (p = 0.021), not born in Canada (p = 0.043), visible minorities (p = 0.01) and have a lower attained education (p < 0.0001) and perceived fair/poor health (p < 0.001). The 34.4% of participants requiring risk factor verification for missing/unusual values were more likely to be visible minorities (p = 0.009) and have a lower attained education (p ≤ 0.006). This study demonstrates the feasibility of risk assessment for risk-stratified screening at the population level. Implementation should incorporate an equity lens to ensure cancer-screening disparities are not widened.
Collapse
Affiliation(s)
- Meghan J. Walker
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Amy Chang
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
| | | | - Annie Turgeon
- CHU de Québec-Université Laval Research Center, Queébec City, QC G1V 4G2, Canada
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge CB1 8RN, UK
| | - Kathleen A. Bell
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
| | - Mireille J. M. Broeders
- Department for Health Evidence, Radboud University Medical Center, 6525EP Nijmegen, The Netherlands
| | - Jennifer D. Brooks
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tim Carver
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jocelyne Chiquette
- CHU de Québec-Université Laval Research Center, Queébec City, QC G1V 4G2, Canada
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Philippe Després
- Department of Physics, Engineering Physics and Optics, Faculty of Science and Engineering, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge CB1 8RN, UK
| | - Andrea Eisen
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
- Sunnybrook Health Science Center, Toronto, ON M4N 3M5, Canada
| | - Laurence Eloy
- Québec Cancer Program, Ministère de la Santé et des Services Sociaux, Quebec City, QC G1S 2M1, Canada
| | - D. Gareth Evans
- Division of Evolution Infection and Genomic Sciences, The University of Manchester, Manchester M13 9PL, UK
| | | | - Yann Joly
- Centre of Genomics and Policy, McGill University, Montreal, QC H3A 0G1, Canada
| | - Raymond H. Kim
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Shana J. Kim
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Bartha M. Knoppers
- Centre of Genomics and Policy, McGill University, Montreal, QC H3A 0G1, Canada
| | - Aisha K. Lofters
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
- Women’s College Research Institute, Toronto, ON M5G 1N8, Canada
| | - Hermann Nabi
- CHU de Québec-Université Laval Research Center, Queébec City, QC G1V 4G2, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jean-Sébastien Paquette
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Applied Health Research, Institute of Epidemiology and Healthcare, University College London, London WC1E 6BT, UK
| | - Amanda J. Sheppard
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tracy L. Stockley
- Division of Clinical Laboratory Genetics, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michel Dorval
- CHU de Québec-Université Laval Research Center, Queébec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
- Faculty of Pharmacy, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Queébec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Anna M. Chiarelli
- Ontario Health (Cancer Care Ontario), Toronto, ON M5G 2L3, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
6
|
Dunlop KLA, Singh N, Robbins HA, Zahed H, Johansson M, Rankin NM, Cust AE. Implementation considerations for risk-tailored cancer screening in the population: A scoping review. Prev Med 2024; 181:107897. [PMID: 38378124 PMCID: PMC11106520 DOI: 10.1016/j.ypmed.2024.107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Risk-tailored screening has emerged as a promising approach to optimise the balance of benefits and harms of existing population cancer screening programs. It tailors screening (e.g., eligibility, frequency, interval, test type) to individual risk rather than the current one-size-fits-all approach of most organised population screening programs. However, the implementation of risk-tailored cancer screening in the population is challenging as it requires a change of practice at multiple levels i.e., individual, provider, health system levels. This scoping review aims to synthesise current implementation considerations for risk-tailored cancer screening in the population, identifying barriers, facilitators, and associated implementation outcomes. METHODS Relevant studies were identified via database searches up to February 2023. Results were synthesised using Tierney et al. (2020) guidance for evidence synthesis of implementation outcomes and a multilevel framework. RESULTS Of 4138 titles identified, 74 studies met the inclusion criteria. Most studies in this review focused on the implementation outcomes of acceptability, feasibility, and appropriateness, reflecting the pre-implementation stage of most research to date. Only six studies included an implementation framework. The review identified consistent evidence that risk-tailored screening is largely acceptable across population groups, however reluctance to accept a reduction in screening frequency for low-risk informed by cultural norms, presents a major barrier. Limited studies were identified for cancer types other than breast cancer. CONCLUSIONS Implementation strategies will need to address alternate models of delivery, education of health professionals, communication with the public, screening options for people at low risk of cancer, and inequity in outcomes across cancer types.
Collapse
Affiliation(s)
- Kate L A Dunlop
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.
| | - Nehal Singh
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Hilary A Robbins
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hana Zahed
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Nicole M Rankin
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Anne E Cust
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Laza C, Niño de Guzmán E, Gea M, Plazas M, Posso M, Rué M, Castells X, Román M. "For and against" factors influencing participation in personalized breast cancer screening programs: a qualitative systematic review until March 2022. Arch Public Health 2024; 82:23. [PMID: 38389068 PMCID: PMC10882761 DOI: 10.1186/s13690-024-01248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Personalized breast cancer screening is a novel strategy that estimates individual risk based on age, breast density, family history of breast cancer, personal history of benign breast lesions, and polygenic risk. Its goal is to propose personalized early detection recommendations for women in the target population based on their individual risk. Our aim was to synthesize the factors that influence women's decision to participate in personalized breast cancer screening, from the perspective of women and health care professionals. METHODS Systematic review of qualitative evidence on factors influencing participation in personalized Breast Cancer Screening. We searched in Medline, Web of science, Scopus, EMBASE, CINAHL and PsycINFO for qualitative and mixed methods studies published up to March 2022. Two reviewers conducted study selection and extracted main findings. We applied the best-fit framework synthesis and adopted the Multilevel influences on the cancer care continuum model for analysis. After organizing initial codes into the seven levels of the selected model, we followed thematic analysis and developed descriptive and analytical themes. We assessed the methodological quality with the Critical Appraisal Skills Program tool. RESULTS We identified 18 studies published between 2017 and 2022, conducted in developed countries. Nine studies were focused on women (n = 478) and in four studies women had participated in a personalized screening program. Nine studies focused in health care professionals (n = 162) and were conducted in primary care and breast cancer screening program settings. Factors influencing women's decision to participate relate to the women themselves, the type of program (personalized breast cancer screening) and perspective of health care professionals. Factors that determined women participation included persistent beliefs and insufficient knowledge about breast cancer and personalized screening, variable psychological reactions, and negative attitudes towards breast cancer risk estimates. Other factors against participation were insufficient health care professionals knowledge on genetics related to breast cancer and personalized screening process. The factors that were favourable included the women's perceived benefits for themselves and the positive impact on health systems. CONCLUSION We identified the main factors influencing women's decisions to participate in personalized breast cancer screening. Factors related to women, were the most relevant negative factors. A future implementation requires improving health literacy for women and health care professionals, as well as raising awareness of the strategy in society.
Collapse
Affiliation(s)
- Celmira Laza
- Department of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
- Biomedical Research Institute of Lleida Fundació Dr. Pifarré (IRBLleida), Lleida, Spain
| | - Ena Niño de Guzmán
- Cancer Prevention and Control Program, Institut Català d' Oncologia, Barcelona, Spain
| | - Montserrat Gea
- Department of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
- Biomedical Research Institute of Lleida Fundació Dr. Pifarré (IRBLleida), Lleida, Spain
| | - Merideidy Plazas
- Cochrane Associated Center- University Foundation of Health Sciences, Bogotá, Colombia
| | - Margarita Posso
- Department of Epidemiology and Evaluation, Hospital del Mar Research Institute, Barcelona, Spain
| | - Montserrat Rué
- Biomedical Research Institute of Lleida Fundació Dr. Pifarré (IRBLleida), Lleida, Spain
- Basic Medical Sciences, University of Lleida, Lleida, Spain
| | - Xavier Castells
- Department of Epidemiology and Evaluation, Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Román
- Department of Epidemiology and Evaluation, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
8
|
Rossi SH, Harrison H, Usher-Smith JA, Stewart GD. Risk-stratified screening for the early detection of kidney cancer. Surgeon 2024; 22:e69-e78. [PMID: 37993323 DOI: 10.1016/j.surge.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Earlier detection and screening for kidney cancer has been identified as a key research priority, however the low prevalence of the disease in unselected populations limits the cost-effectiveness of screening. Risk-stratified screening for kidney cancer may improve early detection by targeting high-risk individuals whilst limiting harms in low-risk individuals, potentially increasing the cost-effectiveness of screening. A number of models have been identified which estimate kidney cancer risk based on both phenotypic and genetic data, and while several of the former have been shown to identify individuals at high-risk of developing kidney cancer with reasonable accuracy, current evidence does not support including a genetic component. Combined screening for lung cancer and kidney cancer has been proposed, as the two malignancies share some common risk factors. A modelling study estimated that using lung cancer risk models (currently used for risk-stratified lung cancer screening) could capture 25% of patients with kidney cancer, which is only slightly lower than using the best performing kidney cancer-specific risk models based on phenotypic data (27%-33%). Additionally, risk-stratified screening for kidney cancer has been shown to be acceptable to the public. The following review summarises existing evidence regarding risk-stratified screening for kidney cancer, highlighting the risks and benefits, as well as exploring the management of potential harms and further research needs.
Collapse
Affiliation(s)
- Sabrina H Rossi
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Hannah Harrison
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Juliet A Usher-Smith
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Zhao Z, Gu S, Yang Y, Wu W, Du L, Wang G, Dong H. A cost-effectiveness analysis of lung cancer screening with low-dose computed tomography and a polygenic risk score. BMC Cancer 2024; 24:73. [PMID: 38218803 PMCID: PMC10787978 DOI: 10.1186/s12885-023-11800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Several studies have proved that Polygenic Risk Score (PRS) is a potential candidate for realizing precision screening. The effectiveness of low-dose computed tomography (LDCT) screening for lung cancer has been proved to reduce lung cancer specific and overall mortality, but the cost-effectiveness of diverse screening strategies remained unclear. METHODS The comparative cost-effectiveness analysis used a Markov state-transition model to assess the potential effect and costs of the screening strategies incorporating PRS or not. A hypothetical cohort of 300,000 heavy smokers entered the study at age 50-74 years and were followed up until death or age 79 years. The model was run with a cycle length of 1 year. All the transition probabilities were validated and the performance value of PRS was extracted from published literature. A societal perspective was adopted and cost parameters were derived from databases of local medical insurance bureau. Sensitivity analyses and scenario analyses were conducted. RESULTS The strategy incorporating PRS was estimated to obtain an ICER of CNY 156,691.93 to CNY 221,741.84 per QALY gained compared with non-screening with the initial start age range across 50-74 years. The strategy that screened using LDCT alone from 70-74 years annually could obtain an ICER of CNY 80,880.85 per QALY gained, which was the most cost-effective strategy. The introduction of PRS as an extra eligible criteria was associated with making strategies cost-saving but also lose the capability of gaining more LYs compared with LDCT screening alone. CONCLUSION The PRS-based conjunctive screening strategy for lung cancer screening in China was not cost-effective using the willingness-to-pay threshold of 1 time Gross Domestic Product (GDP) per capita, and the optimal screening strategy for lung cancer still remains to be LDCT screening for now. Further optimization of the screening modality can be useful to consider adoption of PRS and prospective evaluation remains a research priority.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Public Administration, School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyan Gu
- Center for Health Policy and Management Studies, School of Government, Nanjing University, Nanjing, China
| | - Yi Yang
- Department of Science and Education of the Fourth Affiliated Hospital, and Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijia Wu
- Department of Science and Education of the Fourth Affiliated Hospital, and Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingbin Du
- Department of Cancer Prevention, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences/Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, China
| | - Gaoling Wang
- Department of Public Administration, School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hengjin Dong
- Department of Science and Education of the Fourth Affiliated Hospital, and Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
McWilliams L, Ruane H, Ulph F, Woof VG, Harrison F, Evans DG, French DP. What do women think about having received their breast cancer risk as part of a risk-stratified NHS Breast Screening Programme? A qualitative study. Br J Cancer 2023; 129:356-365. [PMID: 37225893 PMCID: PMC10206350 DOI: 10.1038/s41416-023-02268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Risk-stratified screening is being considered for national breast screening programmes. It is unclear how women experience risk-stratified screening and receipt of breast cancer risk information in real time. This study aimed to explore the psychological impact of undergoing risk-stratified screening within England's NHS Breast Screening Programme. METHODS Individual telephone interviews were conducted with 40 women who participated in the BC-Predict study and received a letter indicating their estimated breast cancer risk as one of four risk categories: low (<2% 10-year risk), average (2-4.99%), above average (moderate; 5-7.99%) or high (≥8%). Audio-recorded interview transcriptions were analysed using reflexive thematic analysis. RESULTS Two themes were produced: 'From risk expectations to what's my future health story?' highlights that women overall valued the opportunity to receive risk estimates; however, when these were discordant with perceived risk, this causes temporary distress or rejection of the information. 'Being a good (woman) citizen' where women felt positive contributing to society but may feel judged if they then cannot exert agency over the management of their risk or access follow-up support CONCLUSIONS: Risk-stratified breast screening was generally accepted without causing long-lasting distress; however, issues related to risk communication and access to care pathways need to be considered for implementation.
Collapse
Affiliation(s)
- Lorna McWilliams
- Manchester Centre for Health Psychology, Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, MAHSC, Oxford Road, M13 9PL, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, England.
| | - Helen Ruane
- Nightingale & Prevent Breast Cancer Research Unit, Manchester University NHS Foundation Trust (MFT), Southmoor Road, Wythenshawe, M23 9LT, Manchester, UK
| | - Fiona Ulph
- Manchester Centre for Health Psychology, Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, MAHSC, Oxford Road, M13 9PL, Manchester, UK
| | - Victoria G Woof
- Manchester Centre for Health Psychology, Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, MAHSC, Oxford Road, M13 9PL, Manchester, UK
| | | | - D Gareth Evans
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, England
- Nightingale & Prevent Breast Cancer Research Unit, Manchester University NHS Foundation Trust (MFT), Southmoor Road, Wythenshawe, M23 9LT, Manchester, UK
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, England
- Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Rd, Manchester, M20 4GJ, England
| | - David P French
- Manchester Centre for Health Psychology, Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, MAHSC, Oxford Road, M13 9PL, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, England
- Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Rd, Manchester, M20 4GJ, England
| |
Collapse
|
11
|
Pashayan N, Easton DF, Michailidou K. Polygenic risk scores in cancer screening: a glass half full or half empty? Lancet Oncol 2023:S1470-2045(23)00217-6. [PMID: 37178709 DOI: 10.1016/s1470-2045(23)00217-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus.
| |
Collapse
|
12
|
Howell A, Howell SJ. Tamoxifen evolution. Br J Cancer 2023; 128:421-425. [PMID: 36765172 PMCID: PMC9938251 DOI: 10.1038/s41416-023-02158-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- A. Howell
- grid.5379.80000000121662407Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK ,grid.417286.e0000 0004 0422 2524Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, Manchester, UK ,grid.412917.80000 0004 0430 9259Manchester Breast Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - S. J. Howell
- grid.5379.80000000121662407Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK ,grid.417286.e0000 0004 0422 2524Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, Manchester, UK ,grid.412917.80000 0004 0430 9259Manchester Breast Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| |
Collapse
|
13
|
Promote Community Engagement in Participatory Research for Improving Breast Cancer Prevention: The P.I.N.K. Study Framework. Cancers (Basel) 2022; 14:cancers14235801. [PMID: 36497282 PMCID: PMC9736257 DOI: 10.3390/cancers14235801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer (BC) has overtaken lung cancer as the most common cancer in the world and the projected incidence rates show a further increase. Early detection through population screening remains the cornerstone of BC control, but a progressive change from early diagnosis only-based to a personalized preventive and risk-reducing approach is widely debated. Risk-stratification models, which also include personal lifestyle risk factors, are under evaluation, although the documentation burden to gather population-based data is relevant and traditional data collection methods show some limitations. This paper provides the preliminary results from the analysis of clinical data provided by radiologists and lifestyle data collected using self-administered questionnaires from 5601 post-menopausal women. The weight of the combinations of women's personal features and lifestyle habits on the BC risk were estimated by combining a model-driven and a data-driven approach to analysis. The weight of each factor on cancer occurrence was assessed using a logistic model. Additionally, communities of women sharing common features were identified and combined in risk profiles using social network analysis techniques. Our results suggest that preventive programs focused on increasing physical activity should be widely promoted, in particular among the oldest women. Additionally, current findings suggest that pregnancy, breast-feeding, salt limitation, and oral contraception use could have different effects on cancer risk, based on the overall woman's risk profile. To overcome the limitations of our data, this work also introduces a mobile health tool, the Dress-PINK, designed to collect real patients' data in an innovative way for improving women's response rate, data accuracy, and completeness as well as the timeliness of data availability. Finally, the tool provides tailored prevention messages to promote critical consciousness, critical thinking, and increased health literacy among the general population.
Collapse
|