1
|
Nosalova N, Majirska M, Keselakova A, Martinkova M, Fabianova D, Mirossay A, Pilatova MB, Kello M. Pyrrolidine SS13 induces oxidative stress and autophagy-mediated cell death in colorectal cancer cells. Eur J Pharm Sci 2025; 205:106982. [PMID: 39644983 DOI: 10.1016/j.ejps.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Pyrrolidines, nitrogenous organic compounds, are among the most intensively studied agents because of their antibacterial, antiviral, neurological, and promising antitumor effects. Moreover, many medicinal drugs contain pyrrolidine moiety such as sunitinib (anticancer drug), telaprevir and ombitasvir (antiviral drugs) or ramipril (antihypertensive drug). RATIONALE OF THE STUDY Based on the pro-apoptotic effect of pyrrolidine SS13, this study focuses on the pro-oxidative properties of the tested pyrrolidine SS13 on colorectal cancer cells to deepen the understanding of its mechanisms of action. RESEARCH HYPOTHESIS We hypothesize that SS13 induces oxidative stress and autophagy activation in HCT116 and Caco-2 cell lines, thus contributing to antiproliferative effects. METHODS Flow cytometry, western blot, fluorescence microscopy and qRT-PCR were used to evaluate the effect of pyrrolidine SS13. CONCLUSION AND FUTURE DIRECTIONS Pyrrolidine SS13 induced oxidative stress through the accumulation of reactive oxygen and nitrogen species in both cell lines and the modulation of both superoxide dismutase isoenzymes (SOD1, SOD2). Oxidative stress was also associated with the activation of DNA damage response system and modulation of stress/survival pathways. We demonstrated for the first time that pyrrolidine SS13 is involved in the induction of autophagy accompanied by increased levels of autophagic markers (p-AMPK, p-ULK, LC3I/II and ATG7) and a significant decrease in p62 protein levels in both cell lines. Finally, chloroquine, an inhibitor of autophagy, enhanced cell survival and suppressed the cytotoxic effect of SS13 in HCT116 and Caco-2 cells, indicating that SS13 contributes to autophagy-mediated cell death. Taken together, our results suggest that oxidative stress and autophagy participate in the antiproliferative effect of pyrrolidine SS13 on colorectal cancer cells. Further research using primary cell cultures obtained from different animal tissues as well as performing in vivo experiments is needed to understand these processes in detail and to investigate the potential therapeutic application of new pyrrolidine derivatives.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Monika Majirska
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Miroslava Martinkova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Dominika Fabianova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Andrej Mirossay
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
2
|
Wang Z, Yan M, Ye L, Zhou Q, Duan Y, Jiang H, Wang L, Ouyang Y, Zhang H, Shen Y, Ji G, Chen X, Tian Q, Xiao L, Wu Q, Meng Y, Liu G, Ma L, Lei B, Lu Z, Xu D. VHL suppresses autophagy and tumor growth through PHD1-dependent Beclin1 hydroxylation. EMBO J 2024; 43:931-955. [PMID: 38360997 PMCID: PMC10943020 DOI: 10.1038/s44318-024-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The Von Hippel-Lindau (VHL) protein, which is frequently mutated in clear-cell renal cell carcinoma (ccRCC), is a master regulator of hypoxia-inducible factor (HIF) that is involved in oxidative stresses. However, whether VHL possesses HIF-independent tumor-suppressing activity remains largely unclear. Here, we demonstrate that VHL suppresses nutrient stress-induced autophagy, and its deficiency in sporadic ccRCC specimens is linked to substantially elevated levels of autophagy and correlates with poorer patient prognosis. Mechanistically, VHL directly binds to the autophagy regulator Beclin1, after its PHD1-mediated hydroxylation on Pro54. This binding inhibits the association of Beclin1-VPS34 complexes with ATG14L, thereby inhibiting autophagy initiation in response to nutrient deficiency. Expression of non-hydroxylatable Beclin1 P54A abrogates VHL-mediated autophagy inhibition and significantly reduces the tumor-suppressing effect of VHL. In addition, Beclin1 P54-OH levels are inversely correlated with autophagy levels in wild-type VHL-expressing human ccRCC specimens, and with poor patient prognosis. Furthermore, combined treatment of VHL-deficient mouse tumors with autophagy inhibitors and HIF2α inhibitors suppresses tumor growth. These findings reveal an unexpected mechanism by which VHL suppresses tumor growth, and suggest a potential treatment for ccRCC through combined inhibition of both autophagy and HIF2α.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Meisi Yan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Leiguang Ye
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yuran Duan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Hongfei Jiang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, 266061, Qingdao, Shandong, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huahe Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang Province, China
| | - Yuli Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Guimei Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Xiaohan Chen
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, 150001, Harbin, Heilongjiang Province, China
| | - Qi Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Guijun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, 266061, Qingdao, Shandong, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang Province, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310029, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
5
|
Zeng XY, Qiu XZ, Wu JN, Liang SM, Huang JA, Liu SQ. Interaction mechanisms between autophagy and ferroptosis: Potential role in colorectal cancer. World J Gastrointest Oncol 2023; 15:1135-1148. [PMID: 37546557 PMCID: PMC10401467 DOI: 10.4251/wjgo.v15.i7.1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 07/12/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy that has the second highest incidence and mortality rate. Although there are many personalized treatment options for CRC, the therapeutic effects are ultimately limited by drug resistance. Studies have aimed to block the initiation and progression of CRC by inducing cell death to overcome this obstacle. Substantial evidence has indicated that both autophagy and ferroptosis play important regulatory roles in CRC. Autophagy, a lysosome-dependent process by which cellular proteins and organelles are degraded, is the basic mechanism for maintaining cell homeostasis. The duality and complexity of autophagy in cancer therapy is a hot topic of discussion. Ferroptosis, a regulated cell death pathway, is associated with iron accumulation-induced lipid peroxidation. The activation of ferroptosis can suppress CRC proliferation, invasion and drug resistance. Furthermore, recent studies have suggested an interaction between autophagy and ferroptosis. Autophagy can selectively degrade certain cellular contents to provide raw materials for ferroptosis, ultimately achieving antitumor and anti-drug resistance. Therefore, exploring the interaction between autophagy and ferroptosis could reveal novel ideas for the treatment of CRC. In this review, we describe the mechanisms of autophagy and ferroptosis, focusing on their roles in CRC and the crosstalk between them.
Collapse
Affiliation(s)
- Xin-Ya Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Xin-Ze Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jiang-Ni Wu
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Mei Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|