1
|
Ismael M, Huang M, Zhong Q. The Bacteriocins Produced by Lactic Acid Bacteria and the Promising Applications in Promoting Gastrointestinal Health. Foods 2024; 13:3887. [PMID: 39682959 DOI: 10.3390/foods13233887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are promising bioactive peptides. Intriguingly, bacteriocins have health benefits to the host and may be applied safely in the food industry as bio-preservatives or as therapeutic interventions preventing intestinal diseases. In recent years, finding a safe alternative approach to conventional treatments to promote gut health is a scientific hotspot. Therefore, this review aimed to give insight into the promising applications of LAB-bacteriocins in preventing intestinal diseases, such as colonic cancer, Helicobacter pylori infections, multidrug-resistant infection-associated colitis, viral gastroenteritis, inflammatory bowel disease, and obesity disorders. Moreover, we highlighted the recent research on bacteriocins promoting gastrointestinal health. The review also provided insights into the proposed mechanisms, challenges and opportunities, trends and prospects. In addition, a SWOT analysis was conducted on the potential applications. Based on properties, biosafety, and health functions of LAB-bacteriocins, we conclude that the future applications of LAB-bacteriocins are promising in promoting gastrointestinal health. Further in vivo trials are needed to confirm these potential effects of LAB-bacteriocins interventions.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Watt E, Andriescu I, Ho EA. Pneumolysin-responsive liposomal platform for selective treatment of Streptococcus pneumoniae. Drug Deliv Transl Res 2024. [DOI: 10.1007/s13346-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 01/04/2025]
|
3
|
Niamah AK, Al-Sahlany STG, Verma DK, Shukla RM, Patel AR, Tripathy S, Singh S, Baranwal D, Singh AK, Utama GL, Chávez González ML, Alhilfi WAH, Srivastav PP, Aguilar CN. Emerging lactic acid bacteria bacteriocins as anti-cancer and anti-tumor agents for human health. Heliyon 2024; 10:e37054. [PMID: 39286220 PMCID: PMC11402949 DOI: 10.1016/j.heliyon.2024.e37054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Modern cancer diagnostics and treatment options have greatly improved survival rates; the illness remains a major cause of mortality worldwide. Current treatments for cancer, such as chemotherapy, are not cancer-specific and may cause harm to healthy cells; therefore, it is imperative that new drugs for cancer be developed that are both safe and effective. It has been found that lactic acid bacteria (LAB) have the potential to produce bacteriocins, which could potentially offer a promising alternative for cancer treatment. They have been shown in several studies to be effective against cancer cells while having no effect on healthy cells. More research is needed to fully understand the potential of LAB bacteriocins as anti-cancer medicines, to find the appropriate dose and delivery route, and to conduct clinical trials to evaluate the effectiveness and safety of the products in human patients, as is suggested by this work. Furthermore, LAB bacteriocins may evolve into a significant new class of anti-cancer drugs and food products. Patients with cancer may have a safe and effective alternative treatment option in the form of anti-cancer foods and drugs. Therefore, the aim of this study is to provide an in-depth analysis of the recent breakthroughs and potential future technical advancements of significant bacteriocins that are produced by LAB, how these bacteriocins function, and how these bacteriocins may be utilized as an anti-cancer agent. In addition, the current analysis emphasizes the significant constraints and boundaries that bacteriocins face when they are used as an anti-cancer factor.
Collapse
Affiliation(s)
- Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basra City, Iraq
| | | | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rakesh Mohan Shukla
- Processing and Food Engineering Division, College of Agricultural Engineering and Technology (CoAE&T), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190 025, Jammu and Kashmir, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Smita Singh
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India
| | - Deepika Baranwal
- Department of Home Science, Arya Mahila PG College, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Amit Kumar Singh
- Department of Post Harvest Technology, College of Horticulture, Banda University of Agriculture and Technology, Banda 210 001, Uttar Pradesh, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Mónica L Chávez González
- Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo Campus., 25280, Coahuila, Mexico
| | | | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo Campus., 25280, Coahuila, Mexico
| |
Collapse
|
4
|
Na L, Fan F. Advances in nanobubbles for cancer theranostics: Delivery, imaging and therapy. Biochem Pharmacol 2024; 226:116341. [PMID: 38848778 DOI: 10.1016/j.bcp.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.
Collapse
Affiliation(s)
- Liu Na
- Ultrasound Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fan Fan
- School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| |
Collapse
|
5
|
Wang Y, Wang Y, Sun T, Xu J. Bacteriocins in Cancer Treatment: Mechanisms and Clinical Potentials. Biomolecules 2024; 14:831. [PMID: 39062544 PMCID: PMC11274894 DOI: 10.3390/biom14070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a severe threat to human health. Although conventional chemotherapy remains a cornerstone of cancer treatment, its significant side effects and the growing issue of drug resistance necessitate the urgent search for more efficient and less toxic anticancer drugs. In recent years, bacteriocins, antimicrobial peptides of microbial origin, have garnered significant attention due to their targeted antitumor activity. This unique activity is mainly attributed to their cationic and amphiphilic nature, which enables bacteriocins to specifically kill tumor cells without harming normal cells. When involving non-membrane-disrupting mechanisms, such as apoptosis induction, cell cycle blockade, and metastasis inhibition, the core mechanism of action is achieved by disrupting cell membranes, which endows bacteriocins with low drug resistance and high selectivity. However, the susceptibility of bacteriocins to hydrolysis and hemolysis in vivo limits their clinical application. To overcome these challenges, structural optimization of bacteriocins or their combination with nanotechnology is proposed for future development. This review aims to study the mechanism of action and current research status of bacteriocins as anticancer treatments, thus providing new insights for their clinical development and application.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
6
|
Thapa D, Kumar V, Naik B, Kumar V, Gupta AK, Mohanta YK, Mishra B, Rustagi S. Harnessing probiotic foods: managing cancer through gut health. Food Sci Biotechnol 2024; 33:2141-2160. [PMID: 39130664 PMCID: PMC11315834 DOI: 10.1007/s10068-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
One of the greatest threats to global health is cancer. Probiotic foods have been shown to have therapeutic promise in the management of cancer, even though traditional treatments such as radiation therapy, chemotherapy, and surgery are still essential. The generation of anticarcinogenic compounds, immune system stimulation, and gut microbiota regulation are a few ways that probiotics when taken in sufficient quantities, might help health. The purpose of this review is to examine the therapeutic potential of probiotic foods in the management of cancer. Research suggests that certain strains of probiotics have anticancer effects by preventing the growth of cancer cells, triggering apoptosis, and reducing angiogenesis in new tumors. Probiotics have shown promise in mitigating treatment-related adverse effects, such as diarrhea, mucositis, and immunosuppression caused by chemotherapy, improving the general quality of life for cancer patients. However, there are several factors, such as patient-specific features, cancer subtype, and probiotic strain type and dosage, which affect how effective probiotic therapies are in managing cancer. More research is necessary to find the long-term safety and efficacy characteristics of probiotics as well as to clarify the best ways to incorporate them into current cancer treatment methods. Graphical abstract Graphical representation showing the role of probiotic foods in cancer management.
Collapse
Affiliation(s)
- Devika Thapa
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand 248140 India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, Meghalaya 793101 India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, Telangana 500075 India
| | - Sarvesh Rustagi
- Department of Food Technology, SALS, Uttaranchal University, Dehradun, 248007 Uttarakhand India
| |
Collapse
|
7
|
Wasiak J, Głowacka P, Pudlarz A, Pieczonka AM, Dzitko K, Szemraj J, Witusik-Perkowska M. Lactic Acid Bacteria-Derived Postbiotics as Adjunctive Agents in Breast Cancer Treatment to Boost the Antineoplastic Effect of a Conventional Therapeutic Comprising Tamoxifen and a New Drug Candidate: An Aziridine-Hydrazide Hydrazone Derivative. Molecules 2024; 29:2292. [PMID: 38792153 PMCID: PMC11124249 DOI: 10.3390/molecules29102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.
Collapse
Affiliation(s)
- Joanna Wasiak
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Adam M. Pieczonka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Str., 91-403 Lodz, Poland;
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Str., 90-237 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (J.W.); (P.G.); (A.P.); (J.S.)
| |
Collapse
|
8
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
9
|
Sevim B, Güneş Altuntaş E. Molecular Dynamic Study on the Structure and Thermal Stability of Mutant Pediocin PA-1 Peptides Engineered with Cysteine Substitutions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10225-3. [PMID: 38424320 DOI: 10.1007/s12602-024-10225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pediocin and analogous bacteriocins, valued for thermal stability, serve as versatile antimicrobials in the food sector. Improving their resilience at high temperatures and deriving derivatives not only benefit food production but also offer broad-spectrum antimicrobial potential in pharmaceuticals, spanning treatments for peptic ulcers, women's health, and novel anticancer agents. The study aims to create mutant peptides capable of establishing a third disulfide bond or enhanced through cysteine substitutions. This involves introducing additional Cys residues into the inherent structure of pediocin PA-1 to facilitate disulfide bond formation. Five mutants (Mut 1-5) were systematically generated with double Cys substitutions and assessed for thermal stability through MD simulations across temperatures (298-394 K). The most robust mutants (Mut 1, Mut 4-5) underwent extended analysis via MD simulations, comparing their structural stability, secondary structure, and surface accessibility to the reference Pediocin PA-1 molecule. This comprehensive assessment aims to understand how Cys substitutions influence disulfide bonds and the overall thermal stability of the mutant peptides. In silico analysis indicated that Mut 1 and Mut 5, along with the reference structure, lose their helical structure and one natural disulfide bond at high temperatures, and may impacting antimicrobial activity. Conversely, Mut 4 retained its helical structure and exhibited thermal stability similar to Pediocin PA-1. Pending further experimental validation, this study implies Mut 4 may have high stability and exceptional resistance to high temperatures, potentially serving as an effective antimicrobial alternative.
Collapse
Affiliation(s)
- Büşra Sevim
- Ankara University Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
10
|
Niculescu AG, Georgescu M, Marinas IC, Ustundag CB, Bertesteanu G, Pinteală M, Maier SS, Al-Matarneh CM, Angheloiu M, Chifiriuc MC. Therapeutic Management of Malignant Wounds: An Update. Curr Treat Options Oncol 2024; 25:97-126. [PMID: 38224423 DOI: 10.1007/s11864-023-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
OPINION STATEMENT Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania
| | - Mihaela Georgescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Dermatology, Dr. Carol Davila Central Military, Emergency University Hospital, Bucharest, Romania
| | - Ioana Cristina Marinas
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania.
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, 020022, Bucharest, Romania
| | - Mariana Pinteală
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Stelian Sergiu Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Chemical Engineering, Faculty of Industrial Design and Business Management, Gheorghe Asachi" Technical University of Iasi, Iasi, Romania
| | - Cristina Maria Al-Matarneh
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest-Giurgiu Street, Giurgiu, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, District 1, Bucharest, Romania
| |
Collapse
|
11
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
12
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
13
|
Wang CK, Huang YH, Shabbir F, Pham HT, Lawrence N, Benfield AH, van der Donk W, Henriques ST, Turner MS, Craik DJ. The Circular Bacteriocin enterocin NKR-5-3B has an Improved Stability Profile over Nisin. Peptides 2023:171049. [PMID: 37390898 DOI: 10.1016/j.peptides.2023.171049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development. Here, we produced the circular bacteriocin enterocin NKR-5-3B (Ent53B) in mg/L quantities using a heterologous Lactococcus expression system, and characterized its thermal stability by NMR, chemical stability by circular dichroism and analytical HPLC, and enzymatic stability by analytical HPLC. We demonstrate that Ent53B is ultra-stable, resistant to temperatures approaching boiling, acidic (pH 2.6) and alkaline (pH 9.0) conditions, the chaotropic agent 6M urea, and following incubation with a range of proteases (i.e., trypsin, chymotrypsin, pepsin, and papain), conditions under which most peptides and proteins degrade. Ent53B is stable across a broader range of pH conditions and proteases than nisin, the most widely used bacteriocin in food manufacturing. Antimicrobial assays showed that differences in stability correlated with differences in bactericidal activity. Overall, this study provides quantitative support for circular bacteriocins being an ultra-stable class of peptide molecules, suggesting easier handling and distribution options available to them in practical applications as antimicrobial agents.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science,.
| | - Yen-Hua Huang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Fatima Shabbir
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Huong T Pham
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Wilfred van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| |
Collapse
|
14
|
Khan IM, Khan SU, Sala HSS, Khan MU, Ud Din MA, Khan S, Hassan SSU, Khan NM, Liu Y. TME-targeted approaches of brain metastases and its clinical therapeutic evidence. Front Immunol 2023; 14:1131874. [PMID: 37228619 PMCID: PMC10204080 DOI: 10.3389/fimmu.2023.1131874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
The tumor microenvironment (TME), which includes both cellular and non-cellular elements, is now recognized as one of the major regulators of the development of primary tumors, the metastasis of which occurs to specific organs, and the response to therapy. Development of immunotherapy and targeted therapies have increased knowledge of cancer-related inflammation Since the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) limit immune cells from entering from the periphery, it has long been considered an immunological refuge. Thus, tumor cells that make their way "to the brain were believed to be protected from the body's normal mechanisms of monitoring and eliminating them. In this process, the microenvironment and tumor cells at different stages interact and depend on each other to form the basis of the evolution of tumor brain metastases. This paper focuses on the pathogenesis, microenvironmental changes, and new treatment methods of different types of brain metastases. Through the systematic review and summary from macro to micro, the occurrence and development rules and key driving factors of the disease are revealed, and the clinical precision medicine of brain metastases is comprehensively promoted. Recent research has shed light on the potential of TME-targeted and potential treatments for treating Brain metastases, and we'll use that knowledge to discuss the advantages and disadvantages of these approaches.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hari Siva Sai Sala
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | | | - Samiullah Khan
- Institute of Entomology, Guizhou University, Scientific Observing and Experimental Station of Crop Pests, Guiyang, Ministry of Agricultural and Affairs, Guiyang, China
| | - Syed Shams ul Hassan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
15
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
16
|
Yang M, Liu S, Zhang C. Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
17
|
Woraprayote W, Janyaphisan T, Adunphatcharaphon S, Sonhom N, Showpanish K, Rumjuankiat K, Visessanguan W, Elliott CT, Petchkongkaew A. Bacteriocinogenic lactic acid bacteria from Thai fermented foods: Potential food applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|