1
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z, Qin Z. Targeting sirtuins for cancer therapy: epigenetics modifications and beyond. Theranostics 2024; 14:6726-6767. [PMID: 39479446 PMCID: PMC11519805 DOI: 10.7150/thno.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinyi Qi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhongyu Liu
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
2
|
Rahnasto-Rilla M, Puumalainen T, Karttunen V, Adla SK, Lahtela-Kakkonen M. Novel inhibitors of bromodomain and extra-terminal domain trigger cell death in breast cancer cell lines. Bioorg Med Chem 2024; 112:117884. [PMID: 39226716 DOI: 10.1016/j.bmc.2024.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Small molecule inhibitors targeting the bromodomain and extra-terminal domain (BET) family proteins have emerged as a promising class of anti-cancer drugs. Nevertheless, the clinical advancement of these agents has been significantly hampered by challenges related to their potency, oral bioavailability, or toxicity. In this study, virtual screening approaches were employed to discover novel inhibitors of the bromodomain-containing protein 4 (BRD4) by analyzing their comparable chemical structural features to established BRD4 inhibitors. Several of these compounds exhibited inhibitory effects on BRD4 activity ranging from 60 % to 70 % at 100 µM concentrations, while one compound also exhibited an 84 % inhibition of Sirtuin 2 (SIRT2) activity. Furthermore, a subset of structurally diverse compounds from the BRD4 inhibitors was selected to investigate their anti-cancer properties in both 2D and 3D cell cultures. These compounds exhibited varying effects on cell numbers depending on the specific cell line, and some of them induced cell cycle arrest in the G0/G1 phase in breast cancer (MDA-MB-231) cells. Moreover, all the compounds studied reduced the sizes of spheroids, and the most potent compound exhibited a 90 % decrease in growth at a concentration of 10 µM in T47D cells. These compounds hold potential as epigenetic regulators for future studies.
Collapse
Affiliation(s)
| | - Tatu Puumalainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Vilma Karttunen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | | |
Collapse
|
3
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Taniya M Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Kaya R Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
4
|
Tavares MEA, Pinto AP, da Rocha AL, Sampaio LV, Correia RR, Batista VRG, Veras ASC, Chaves-Neto AH, da Silva ASR, Teixeira GR. Combined physical exercise re-synchronizes expression of Bmal1 and REV-ERBα and up-regulates apoptosis and metabolism in the prostate during aging. Life Sci 2024; 351:122800. [PMID: 38880169 DOI: 10.1016/j.lfs.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.
Collapse
Affiliation(s)
- Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson Luiz da Rocha
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Larissa Victorino Sampaio
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Antonio Hernandes Chaves-Neto
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| |
Collapse
|
5
|
Chang CF, Chang PC, Lee YC, Pan CY, Chang HM, Wu WJ, Lin MY, Chen CY, Wen ZH, Lee CH. The Antimicrobial Peptide Tilapia Piscidin 4 Induced the Apoptosis of Bladder Cancer Through ERK/SIRT1/PGC-1α Signaling Pathway. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10296-2. [PMID: 38805142 DOI: 10.1007/s12602-024-10296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Marine antimicrobial peptides have been demonstrated in numerous studies to possess anti-cancer properties. This research investigation aimed to explore the fundamental molecular mechanisms underlying the antitumor activity of Tilapia piscidin 4 (TP4), an antimicrobial peptide, in human bladder cancer. TP4 exhibited a remarkable inhibitory effect on the proliferation of bladder cancer cells through cell cycle arrest at the G2/M phase. Additionally, TP4 upregulated the expression of cleaved caspase-3, caspase-9, and PARP, leading to the activation of apoptotic pathways in bladder cancer cells. TP4 exhibit a marked rise in mitochondria reactive oxygen species, leading to the subsequent loss of potential for the mitochondrial membrane. Furthermore, the inhibition of mitochondrial oxidative phosphorylation resulted in a decrease in downstream ATP production. Meanwhile, TP4-treated bladder cancer cells showed an increase in Bax and ERK but a decrease in SIRT1, PGC-1α, and Bcl2. ERK activation, SIRT1/PGC-1α-axis, and TP4-induced apoptosis were all significantly reversed by the ERK inhibitor SCH772984. Finally, the inhibitory effect of TP4 on tumor growth has been confirmed in a zebrafish bladder cancer xenotransplantation model. These findings suggest that TP4 may be a potential agents for human bladder cancer through apoptosis induction, ERK activation, and the promotion of SIRT1-mediated signaling pathways.
Collapse
Affiliation(s)
- Chun-Feng Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Lien-Hai Rd, Kaohsiung, 804201, Taiwan
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Zhongzheng 1st Rd, Kaohsiung, 802301, ROC
| | - Po-Chih Chang
- Division of Thoracic Surgery, Department of Surgery, Weight Management Center Kaohsiung Medical University Hospital/Kaohsiung Medical University, Department of Sports Medicine, Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811532, Taiwan
| | - Hui-Min Chang
- Division of Pharmacology and Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wan-Ju Wu
- Division of Pharmacology and Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Lien-Hai Rd, Kaohsiung, 804201, Taiwan.
- Department of Marine Biotechnology and Resources, Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
6
|
Lombardo GE, Russo C, Maugeri A, Navarra M. Sirtuins as Players in the Signal Transduction of Citrus Flavonoids. Int J Mol Sci 2024; 25:1956. [PMID: 38396635 PMCID: PMC10889095 DOI: 10.3390/ijms25041956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| |
Collapse
|
7
|
Zhao T, Zhu H, Zou T, Zhao S, Zhou L, Ni M, Liu F, Zhu H, Dou X, Di J, Xu B, Wang L, Zou X. DDX3X interacts with SIRT7 to promote PD-L1 expression to facilitate PDAC progression. Oncogenesis 2024; 13:8. [PMID: 38316768 PMCID: PMC10844636 DOI: 10.1038/s41389-024-00509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized as the most aggressive and fatal malignancy. A previous study reported that PDAC patients who exhibit elevated levels of DDX3X have a poor prognosis and low overall survival rate. However, the underlying molecular mechanism remains unclear. This study aimed to investigate the specific roles of DDX3X in PDAC. Multiple bioinformatics analyses were used to evaluate DDX3X expression and its potential role in PDAC. In vitro and in vivo studies were performed to assess the effects of DDX3X on PDAC cell growth. Furthermore, Western blotting, quantitative PCR, immunohistochemistry, immunofluorescence, mass spectrometry, coimmunoprecipitation and multiplexed immunohistochemical staining were conducted to identify the specific regulatory mechanism in PDAC. The results verified that DDX3X expression is notably upregulated in the tumor tissue vs. normal tissue of PDAC patients. DDX3X knockdown markedly suppressed the proliferation, invasion and migration of PDAC cells in vitro and inhibited tumor growth in vivo. Conversely, overexpression of DDX3X induced the opposite effect. Further studies supported that the DDX3X protein can associate with sirtuin 7 (SIRT7) to stimulate PDAC carcinogenesis and progression. Furthermore, SIRT7 inhibition significantly impeded DDX3X-mediated tumor growth both ex vivo and in vivo. The results also revealed that programmed death ligand 1 (PD-L1) expression is positively correlated with DDX3X expression. These results reveal significant involvement of the DDX3X-SIRT7 axis in the initiation and advancement of PDAC and offer previously undiscovered therapeutic options for PDAC management.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, 210023, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Tianhui Zou
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Si Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Lin Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Muhan Ni
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Feng Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Hao Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Xiaotan Dou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Jian Di
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Bing Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
8
|
Hasona NA, Elsabahy M, Shaker OG, Zaki O, Ayeldeen G. The Implication of Growth Arrest-Specific 5 rs145204276 Polymorphism and Serum Expression of Sirtuin 1, Transforming Growth Factor-Beta, and microRNA-182 in Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549241227415. [PMID: 38322669 PMCID: PMC10846042 DOI: 10.1177/11795549241227415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Background Breast cancer (BC) patients have a higher chance of survival if it is diagnosed at an early stage, which is essential for efficient treatment of the condition. The results of an elevated risk of cancer, including BC, previously associated with the ins/del polymorphism rs145204276 in the promoter region of growth arrest-specific 5 (GAS5) are still up for debate. Thus, this study aimed to appraise the frequency of the GAS5 rs145204276 variant with BC risk and demonstrate the potential impact of the sirtuin 1 (SIRT-1), transforming growth factor-beta (TGF-β), and microRNA-182 (miR-182) expression and their diagnostic value in BC. Methods Blood samples of 155 patients with BC and fibroadenoma and 80 healthy controls were analyzed for GAS5 rs145204276 single nucleotide polymorphism (SNP), SIRT-1, TGF-β, and miRNA-182 expression levels. Results Ins/ins genotype and ins allele frequencies for GAS5 rs145204276 were considerably higher in BC patients compared with controls. Patients with BC had significantly greater serum levels of TGF-β, miR-182, and SIRT-1 expression. Conclusions The SIRT-1, TGF-β, and miR-182 genes provide novel, noninvasive diagnostic biomarkers for BC.
Collapse
Affiliation(s)
- Nabil A Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Othman Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, New Damietta, Egypt
| | - Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Zhang J, Ye J, Zhu S, Han B, Liu B. Context-dependent role of SIRT3 in cancer. Trends Pharmacol Sci 2024; 45:173-190. [PMID: 38242748 DOI: 10.1016/j.tips.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Sirtuin 3 (SIRT3), an NAD+-dependent deacetylase, plays a key role in the modulation of metabolic reprogramming and regulation of cell death, as well as in shaping tumor phenotypes. Owing to its critical role in determining tumor-type specificity or the direction of tumor evolution, the development of small-molecule modulators of SIRT3, including inhibitors and activators, is of significant interest. In this review, we discuss recent studies on the oncogenic or tumor-suppressive functions of SIRT3, evaluate advances in SIRT3-targeted drug discovery, and present potential avenues for the design of small-molecule modulators of SIRT3 for cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiou Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Kaya SG, Eren G. Selective inhibition of SIRT2: A disputable therapeutic approach in cancer therapy. Bioorg Chem 2024; 143:107038. [PMID: 38113655 DOI: 10.1016/j.bioorg.2023.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Sirtuin 2 (SIRT2) is involved in a wide range of processes, from transcription to metabolism to genome stability. Dysregulation of SIRT2 has been associated with the pathogenesis and progression of different diseases, such as cancer and neurodegenerative disorders. In this context, targeting SIRT2 activity by small molecule inhibitors is a promising therapeutic strategy for treating related conditions, particularly cancer. This review summarizes the regulatory roles and molecular mechanisms of SIRT2 in cancer and the attempts to evaluate potential antitumor activities of SIRT2-selective inhibitors by in vitro and in vivo testing, which are expected to deepen our understanding of the role of SIRT2 in tumorigenesis and progression and may offer important clues or inspiration ideas for developing SIRT2 inhibitors with excellent affinity and selectivity.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
11
|
Bonomini F, Favero G, Petroni A, Paroni R, Rezzani R. Melatonin Modulates the SIRT1-Related Pathways via Transdermal Cryopass-Laser Administration in Prostate Tumor Xenograft. Cancers (Basel) 2023; 15:4908. [PMID: 37894275 PMCID: PMC10605886 DOI: 10.3390/cancers15204908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Melatonin displays antitumor activity in several types of malignancies; however, the best delivery route and the underlying mechanisms are still unclear. Alternative non-invasive delivery route based on transdermal administration of melatonin by cryopass-laser treatment demonstrated efficiency in reducing the progression of LNCaP prostate tumor cells xenografted into nude mice by impairing the biochemical pathways affecting redox balance. Here, we investigated the impact of transdermal melatonin on the tumor dimension, microenvironment structure, and SIRT1-modulated pathways. Two groups (vehicle cryopass-laser and melatonin cryopass-laser) were treated for 6 weeks (3 treatments per week), and the tumors collected were analyzed for hematoxylin eosin staining, sirius red, and SIRT1 modulated proteins such as PGC-1α, PPARγ, and NFkB. Melatonin in addition to simple laser treatment was able to boost the antitumor cancer activity impairing the tumor microenvironment, increasing the collagen structure around the tumor, and modulating the altered SIRT1 pathways. Transdermal application is effective, safe, and feasible in humans as well, and the significance of these findings necessitates further studies on the antitumor mechanisms exerted by melatonin.
Collapse
Affiliation(s)
- Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Anna Petroni
- Biomedicine and Nutrition Research Network, Via Paracelso 1, 20129 Milan, Italy;
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
12
|
Huang B, Wen G, Li R, Wu M, Zou Z. Integrated network pharmacology, bioinformatics, and molecular docking to explore the mechanisms of berberine regulating autophagy in breast cancer. Medicine (Baltimore) 2023; 102:e35070. [PMID: 37682166 PMCID: PMC10489552 DOI: 10.1097/md.0000000000035070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Berberine exhibits anticancer efficacy against a variety of malignancies, including breast cancer (BRCA). However, the underlying mechanism is ambiguous. This study sought to explore the targets and the probable mechanism of berberine regulating autophagy in BRCA through network pharmacology, bioinformatics, and molecular docking. The targets of berberine and autophagy-modulated genes were derived from online databases, and the Cancer Genome Atlas database was used to identify the differentially expressed genes of BRCA. Then, through intersections, the autophagy-modulated genes regulated by berberine (AMGRBs) in BRCA were obtained. Next, we established a protein-protein interaction network using the Search Tool for the Retrieval of Interacting Genes database. Afterward, gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were employed to explore the targets' biological functions. Additionally, molecular docking was conducted to verify the binding ability of berberine to the targets. Finally, to determine the prognostic value of AMGRBs in BRCA, we performed overall survival analyses. We identified 29 AMGRBs in BRCA, including CASP3, MTOR, AKT1, GSK3B, PIK3CA, and others. Gene ontology enrichment analysis showed that the AMGRBs in BRCA were associated with autophagy regulation, negative regulation of catabolic process, macroautophagy, and other biological processes. Kyoto encyclopedia of genes and genomes enrichment analyses indicated that AMGRBs in BRCA were involved in epidermal growth factor receptor tyrosine kinase inhibitor resistance, PI3K/Akt signaling pathway, JAK-STAT signaling pathway, and others. Molecular docking results proved that berberine had strong binding affinities with AMGRBs in BRCA. Survival analyses indicated that ATM, HTR2B, LRRK2, PIK3CA, CDK5, and IFNG were associated with the prognosis of BRCA. This study identified the targets and pathways of berberine for regulating autophagy in BRCA, which contributed to a better understanding of berberine's function in BRCA and serve as a foundation and reference for further study and therapeutic application of berberine.
Collapse
Affiliation(s)
- Bowan Huang
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gengzhi Wen
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
13
|
Abdel-Sattar OE, Allam RM, Al-Abd AM, El-Halawany AM, EL-Desoky AM, Mohamed SO, Sweilam SH, Khalid M, Abdel-Sattar E, Meselhy MR. Hypophyllanthin and Phyllanthin from Phyllanthus niruri Synergize Doxorubicin Anticancer Properties against Resistant Breast Cancer Cells. ACS OMEGA 2023; 8:28563-28576. [PMID: 37576627 PMCID: PMC10413485 DOI: 10.1021/acsomega.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Doxorubicin (DOX) is a cornerstone chemotherapeutic agent for the treatment of several malignancies such as breast cancer; however, its activity is ameliorated by the development of a resistant phenotype. Phyllanthus species have been studied previously for their potential anticancer properties. The current work is aimed to study the potential cytotoxicity and chemomodulatory effects of hypophyllanthin (PN4) and phyllanthin (PN5) isolated from Phyllanthus niruri to DOX against the adriamycin multidrug-resistant breast cancer cells (MCF-7ADR) and elucidate their mechanism of action. The major compounds of the active methylene chloride fraction were isolated and assessed for their potential cytotoxicity and chemomodulatory effects on DOX against naïve (MCF-7) and resistant breast (MCF-7ADR) cancer cells. The mechanism of action of both compounds in terms of their impacts on programmed/non-programmed cell death (apoptosis and autophagy/necrosis), cell cycle progression/arrest, and tumor cell migration/invasion was investigated. Both compounds PN4 and PN5 showed a moderate but similar potency against MCF-7 as well as MCF-7ADR and significantly synergized DOX-induced anticancer properties against MCF-7ADR. The chemomodulatory effect of both compounds to DOX was found to be via potentiating DOX-induced cell cycle interference and apoptosis induction. It was found that PN4 and PN5 blocked the apoptosis-escape autophagy pathway in MCF-7ADR. On the molecular level, both compounds interfered with SIRT1 expression and consequently suppressed Akt phosphorylation, and PN5 blocked apoptosis escape. Furthermore, PN4 and PN5 showed promising antimigratory and anti-invasive effects against MCF-7ADR, as confirmed by suppression of N-cadherin/β-catenin expression. In conclusion, for the first time, hypophyllanthin and phyllanthin isolated from P. niruri showed promising chemomodulatory effects to the DOX-induced chemotherapeutic activity against MCF-7ADR. Both compounds significantly synergized DOX-induced anticancer properties against MCF-7ADR. This enhanced activity was explained by further promoting DOX-induced apoptosis and suppressing the apoptosis-escape autophagy feature of the resistant breast cancer cells. Both compounds (hypophyllanthin and phyllanthin) interfered with the SIRT1/Akt pathway and suppressed the N-cadherin/β-catenin axis, confirming the observed antiproliferative, cytotoxic, and anti-invasive effects of hypophyllanthin and phyllanthin.
Collapse
Affiliation(s)
- Ola E. Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Rasha M. Allam
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Al-Abd
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ali M. El-Halawany
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Ahmed M. EL-Desoky
- Department of Molecular Biology,
Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32958, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical
Sciences, Universiti Sains Malaysia, Gelugor, Penang 11700, Malaysia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of
Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Essam Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Meselhy R. Meselhy
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|
14
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|