1
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Tang S, Tang R, Chen G, Zhang D, Lin K, Yang H, Fu J, Guo Y, Lin F, Dong X, Huang T, Kong J, Yin X, Ge A, Lin Q, Wu M, Liu X, Zeng Y, Cai Z. Personalized neoantigen hydrogel vaccine combined with PD-1 and CTLA-4 double blockade elicits antitumor response in liver metastases by activating intratumoral CD8 +CD69 + T cells. J Immunother Cancer 2024; 12:e009543. [PMID: 39694701 DOI: 10.1136/jitc-2024-009543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Liver metastasis is highly aggressive and immune tolerant, and lacks effective treatment strategies. This study aimed to develop a neoantigen hydrogel vaccine (NPT-gels) with high clinical feasibility and further investigate its efficacy and antitumor molecular mechanisms in combination with immune checkpoint inhibitors (ICIs) for the treatment of liver metastases. METHODS The effects of liver metastasis on survival and intratumor T-cell subpopulation infiltration in patients with advanced tumors were investigated using the Surveillance, Epidemiology, and End Results Program (SEER) database and immunofluorescence staining, respectively. NPT-gels were prepared using hyaluronic acid, screened neoantigen peptides, and dual clinical adjuvants [Poly(I:C) and thymosin α-1]. Then, the efficacy and corresponding antitumor molecular mechanisms of NPT-gels combined with programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 double blockade (PCDB) for the treatment of liver metastases were investigated using various preclinical liver metastasis models. RESULTS Liver metastases are associated with poorer 5-year overall survival, characterized by low infiltration of cytotoxic CD8+ T cells and high infiltration of regulatory T cells (Tregs). NPT-gels overcame the challenges faced by conventional neoantigen peptide vaccines by sustaining a durable, high-intensity immune response with a single injection and significantly improving the infiltration of neoantigen-specific T-cell subpopulations in different mice subcutaneous tumor models. Importantly, NPT-gels further combined with PCDB could enhance neoantigen-specific T-cell infiltration and effectively unlock the immunosuppressive microenvironment of liver metastases, showing superior antitumor efficacy and inducing long-term immune memory in various preclinical liver metastasis models without obvious toxicity. Mechanistically, the combined strategy can inhibit Tregs, induce the production and infiltration of neoantigen-specific CD8+CD69+ T cells to enhance the immune response, and potentially elicit antigen-presenting effects in Naïve B_Ighd+ cells and M1-type macrophages. CONCLUSIONS This study demonstrated that NPT-gels combined with PCDB could exert a durable and powerful antitumor immunity by enhancing the recruitment and activation of CD8+CD69+ T cells, which supports the rationale and clinical translation of this combination strategy and provides important evidence for further improving the immunotherapy efficacy of liver metastases in the future.
Collapse
Affiliation(s)
- Shichuan Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Kongying Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Huan Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jun Fu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Yutong Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Fangzhou Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Tingfeng Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jie Kong
- Department of Hepatobiliary, Heze Municipal Hospital, Heze, Shandong, P. R. China
| | - Xiaowei Yin
- Department of Pathology, Shanxian Central Hospital, Heze, Shandong, P. R. China
| | - Aimin Ge
- Department of Pathology, Heze Municipal Hospital, Heze, Shandong, P. R. China
| | - Qizhu Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
3
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
4
|
Zhang X, Goedegebuure SP, Chen MY, Mishra R, Zhang F, Yu YY, Singhal K, Li L, Gao F, Myers NB, Vickery T, Hundal J, McLellan MD, Sturmoski MA, Kim SW, Chen I, Davidson JT, Sankpal NV, Myles S, Suresh R, Ma CX, Foluso A, Wang-Gillam A, Davies S, Hagemann IS, Mardis ER, Griffith O, Griffith M, Miller CA, Hansen TH, Fleming TP, Schreiber RD, Gillanders WE. Neoantigen DNA vaccines are safe, feasible, and induce neoantigen-specific immune responses in triple-negative breast cancer patients. Genome Med 2024; 16:131. [PMID: 39538331 PMCID: PMC11562513 DOI: 10.1186/s13073-024-01388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Neoantigen vaccines can induce or enhance highly specific antitumor immune responses with minimal risk of autoimmunity. We have developed a neoantigen DNA vaccine platform capable of efficiently presenting both HLA class I and II epitopes and performed a phase 1 clinical trial in triple-negative breast cancer patients with persistent disease on surgical pathology following neoadjuvant chemotherapy, a patient population at high risk of disease recurrence. METHODS Expressed somatic mutations were identified by tumor/normal exome sequencing and tumor RNA sequencing. The pVACtools software suite of neoantigen prediction algorithms was used to identify and prioritize cancer neoantigens and facilitate vaccine design for manufacture in an academic GMP facility. Neoantigen DNA vaccines were administered via electroporation in the adjuvant setting (i.e., following surgical removal of the primary tumor and completion of standard of care therapy). Vaccines were monitored for safety and immune responses via ELISpot, intracellular cytokine production via flow cytometry, and TCR sequencing. RESULTS Eighteen subjects received three doses of a neoantigen DNA vaccine encoding on average 11 neoantigens per patient (range 4-20). The vaccinations were well tolerated with relatively few adverse events. Neoantigen-specific T cell responses were induced in 14/18 patients as measured by ELISpot and flow cytometry. At a median follow-up of 36 months, recurrence-free survival was 87.5% (95% CI: 72.7-100%) in the cohort of vaccinated patients. CONCLUSION Our study demonstrates neoantigen DNA vaccines are safe, feasible, and capable of inducing neoantigen-specific immune responses. CLINICAL TRIAL REGISTRATION NUMBER NCT02348320.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael Y Chen
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rashmi Mishra
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yik Yeung Yu
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kartik Singhal
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nancy B Myers
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammi Vickery
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael D McLellan
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark A Sturmoski
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Samuel W Kim
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ina Chen
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse T Davidson
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Narendra V Sankpal
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stephanie Myles
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Rama Suresh
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Ademuyiwa Foluso
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea Wang-Gillam
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Sherri Davies
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
- Current Affiliation: Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Obi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christopher A Miller
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert D Schreiber
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA.
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Yu W, Yu H, Zhao J, Zhang H, Ke K, Hu Z, Huang S. NeoDesign: a computational tool for optimal selection of polyvalent neoantigen combinations. Bioinformatics 2024; 40:btae585. [PMID: 39331572 PMCID: PMC11471261 DOI: 10.1093/bioinformatics/btae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024] Open
Abstract
MOTIVATION Tumor polyvalent neoantigen mRNA vaccines are gaining prominence in immunotherapy. The design of sequences in vaccine development is crucial for enhancing both the immunogenicity and safety of vaccines. However, a major challenge lies in selecting the optimal sequences from the large pools generated by multiple peptide combinations and synonymous codons. RESULTS We introduce NeoDesign, a computational tool designed to tackle the challenge of sequence design. NeoDesign comprises four modules: Library Construction, Optimal Path Filtering, Linker Addition, and λ-Evaluation. It aims to identify the optimal protein sequence for tumor polyvalent neoantigen vaccines by minimizing linker usage, avoiding unexpected neoantigens and functional domains, and simplifying the structure. It also provides a preference scheme to balance mRNA stability and protein expression when designing mRNA sequences for the optimal protein sequence. This tool can potentially improve the sequence design of tumor polyvalent neoantigen mRNA vaccines, thereby significantly advancing immunotherapy strategies. AVAILABILITY AND IMPLEMENTATION NeoDesign is freely available on https://github.com/HuangLab-Fudan/neoDesign and https://figshare.com/projects/NeoDesign/221704.
Collapse
Affiliation(s)
- Wenqian Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwu Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingjing Zhao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kalam Ke
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
7
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
8
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
9
|
Riva E, Carboni S, di Berardino-Besson W, Moyat M, Belnoue E, Devy-Dimanche L, Rossi M. Bimodal Effect of NKG2A Blockade on Intratumoral and Systemic CD8 T Cell Response Induced by Cancer Vaccine. Cancers (Basel) 2024; 16:2036. [PMID: 38893156 PMCID: PMC11171001 DOI: 10.3390/cancers16112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Immune check-point blockade (ICB) has revitalized cancer immunotherapy, showing unprecedented efficacy despite only a narrow number of indications and with limited long-term protection. Cancer vaccines are promising combination partners for ICB to widen the patient population profiting from these treatments. Therapeutic heterologous prime-boost vaccination with KISIMATM protein vaccine and VSV-GP-TAg oncolytic virus was shown to inflame the tumor microenvironment, promoting significant infiltration of antigen-specific CD8 T cells resulting in robust antitumoral efficacy in mouse tumor models, and clinical trials are currently ongoing. Here, we report the impact of NKG2A blockade on antitumoral CD8 T cell immune response elicited by KISIMA-VSV-GP-TAg vaccination in tumor mouse models. Combination therapy significantly reduced the amount of vaccine-induced exhausted CD8 T cells infiltrating the tumor, resulting in short-term improved tumor growth control and prolonged mouse survival, while it also influenced the establishment of systemic effector memory CD8 T cell response. Taken together, these data show a compartment-dependent effect of NKG2A blockade on cancer vaccine-induced T cell immunity, increasing intratumoral T cell efficacy and attenuating the development of peripheral effector memory CD8 T cell response.
Collapse
Affiliation(s)
- Erika Riva
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Susanna Carboni
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Wilma di Berardino-Besson
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Mati Moyat
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Elodie Belnoue
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Laetitia Devy-Dimanche
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Matteo Rossi
- Amal Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| |
Collapse
|
10
|
Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini C, Postwala H, Severino P, Priefer R, Prajapati BG, Maheshwari R. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater 2024; 180:1-17. [PMID: 38604468 DOI: 10.1016/j.actbio.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.
Collapse
Affiliation(s)
- Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Cristina Blanco-Llamero
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal
| | | | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Humzah Postwala
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Patricia Severino
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil; Massachusetts College of Pharmacy and Health Sciences University, Boston, MA 02115, USA
| | - Ronny Priefer
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bhupendra Gopalbhai Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
11
|
Sotirov S, Dimitrov I. Tumor-Derived Antigenic Peptides as Potential Cancer Vaccines. Int J Mol Sci 2024; 25:4934. [PMID: 38732150 PMCID: PMC11084719 DOI: 10.3390/ijms25094934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.
Collapse
Affiliation(s)
| | - Ivan Dimitrov
- Drug Design and Bioinformatics Lab, Faculty of Pharmacy, Medical University of Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria;
| |
Collapse
|
12
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
13
|
Kelly JJ, Ankrom ET, Newkirk SE, Thévenin D, Pires MM. Targeted acidosis mediated delivery of antigenic MHC-binding peptides. Front Immunol 2024; 15:1337973. [PMID: 38665920 PMCID: PMC11043575 DOI: 10.3389/fimmu.2024.1337973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Emily T. Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
15
|
Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, Zhang H, Wang X, Dai W, Yang W, Zhang Q, He B. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS NANO 2024; 18:4590-4612. [PMID: 38047809 DOI: 10.1021/acsnano.3c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Anna Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol 2024; 71:101848. [PMID: 38035643 DOI: 10.1016/j.smim.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
17
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
18
|
Han R, Wang Y, Lu L. Sensitizing the Efficiency of ICIs by Neoantigen mRNA Vaccines for HCC Treatment. Pharmaceutics 2023; 16:59. [PMID: 38258070 PMCID: PMC10821464 DOI: 10.3390/pharmaceutics16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
This study builds upon the groundbreaking mRNA vaccine Nobel Prize win in 2023 for COVID-19 prevention, paving the way for next-generation mRNA cancer vaccines to revolutionize immunotherapy. Despite the existing challenges, such as the presence of a suppressive tumor microenvironment and the identification of cancer-associated antigens, recent results from the KEYNOTE-942 trial have successfully demonstrated the effectiveness of mRNA-based cancer treatments, providing clinical evidence for the first time. This trial aimed to evaluate the efficacy and safety of combining immune checkpoint inhibitors with mRNA-based therapies in treating cancer. This advancement undeniably represents new hope for hepatocellular carcinoma (HCC) patients. However, progress in this field remains limited. In this article, we summarized the current state of applying immune checkpoint inhibitors (ICIs) combined with neoantigen mRNA vaccines. Additionally, we discussed potential targets for designing novel mRNA vaccines and potential mRNA vaccine delivery vehicles. The objective of this article is to inspire enthusiasm for the exploration of innovative therapeutic strategies that combine ICIs with neoantigen mRNA vaccines for HCC treatment and HCC prevention.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| |
Collapse
|
19
|
Hargrave A, Mustafa AS, Hanif A, Tunio JH, Hanif SNM. Recent Advances in Cancer Immunotherapy with a Focus on FDA-Approved Vaccines and Neoantigen-Based Vaccines. Vaccines (Basel) 2023; 11:1633. [PMID: 38005965 PMCID: PMC10675687 DOI: 10.3390/vaccines11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer immunotherapies refer to the concept of retraining the immune system to target malignant cells. Multiple immunotherapeutic options exist including immune modulating antibodies, immune stimulating cytokines, chimeric antigen receptor T cell therapy, and vaccines. Overall, this field has advanced rapidly as knowledge of the tumor microenvironment, immunological pathways, and biotechnology expands. Specifically, advancements in neoantigen identification, characterization, and formulation into a vaccine show promise. This review is focused on previously United States Food and Drug Administration-approved cancer therapeutic vaccines and neoantigen-based vaccine developments along with the associated relevant clinical trials.
Collapse
Affiliation(s)
- Anna Hargrave
- Department of Biomedical Sciences, University of Pikeville, Pikeville, KY 41501, USA;
| | - Abu Salim Mustafa
- Department of Microbiology, Kuwait University, Kuwait City 12037, Kuwait;
| | - Asma Hanif
- Department of Restorative Sciences, Kuwait University, Kuwait City 12037, Kuwait;
| | - Javed H. Tunio
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | | |
Collapse
|
20
|
Kelly JJ, Ankrom E, Thévenin D, Pires MM. Targeted Acidosis Mediated Delivery of Antigenic MHC-Binding Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562409. [PMID: 37904977 PMCID: PMC10614887 DOI: 10.1101/2023.10.18.562409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complexes offers a promising strategy for immunotherapy due to its specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer cells using pH(low) insertion peptides (pHLIP). We demonstrated that the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and subsequent activation of T cells. This work highlights the potential of pHLIP as a vehicle for targeted delivery of antigenic peptides and their presentation via MHC-bound complexes on cancer cell surfaces for activation of T cells with implications for enhancing anti-cancer immunotherapy.
Collapse
|
21
|
Rumler S. Non-cellular immunotherapies in pediatric central nervous system tumors. Front Immunol 2023; 14:1242911. [PMID: 37885882 PMCID: PMC10598668 DOI: 10.3389/fimmu.2023.1242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer and the most common cause of cancer death in pediatric patients. New therapies are desperately needed for some of the most malignant of all cancers. Immunotherapy has emerged in the past two decades as an additional avenue to augment/replace traditional therapies (such as chemotherapy, surgery, and radiation therapy). This article first discusses the unique nature of the pediatric CNS immune system and how it interacts with the systemic immune system. It then goes on to review three important and widely studied types of immune therapies: checkpoint inhibitors, vaccines, and radiation therapy, and touches on early studies of antibody-mediated immunogenic therapies, Finally, the article discusses the importance of combination immunotherapy for pediatric CNS tumors, and addresses the neurologic toxicities associated with immunotherapies.
Collapse
Affiliation(s)
- Sarah Rumler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Massa C, Seliger B. Combination of multiple omics techniques for a personalized therapy or treatment selection. Front Immunol 2023; 14:1258013. [PMID: 37828984 PMCID: PMC10565668 DOI: 10.3389/fimmu.2023.1258013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Despite targeted therapies and immunotherapies have revolutionized the treatment of cancer patients, only a limited number of patients have long-term responses. Moreover, due to differences within cancer patients in the tumor mutational burden, composition of the tumor microenvironment as well as of the peripheral immune system and microbiome, and in the development of immune escape mechanisms, there is no "one fit all" therapy. Thus, the treatment of patients must be personalized based on the specific molecular, immunologic and/or metabolic landscape of their tumor. In order to identify for each patient the best possible therapy, different approaches should be employed and combined. These include (i) the use of predictive biomarkers identified on large cohorts of patients with the same tumor type and (ii) the evaluation of the individual tumor with "omics"-based analyses as well as its ex vivo characterization for susceptibility to different therapies.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
23
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. The international clinical trials registry platform (ICTRP): data integrity and the trends in clinical trials, diseases, and drugs. Front Pharmacol 2023; 14:1228148. [PMID: 37790806 PMCID: PMC10544909 DOI: 10.3389/fphar.2023.1228148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: Clinical trials are the gold standard for testing new therapies. Databases like ClinicalTrials.gov provide access to trial information, mainly covering the US and Europe. In 2006, WHO introduced the global ICTRP, aggregating data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform by June 2019. This study conducts a comprehensive global analysis of the ICTRP database and provides framework for large-scale data analysis, data preparation, curation, and filtering. Materials and methods: The trends in 689,793 records from the ICTRP database (covering trials registered from 1990 to 2020) were analyzed. Records were adjusted for duplicates and mapping of agents to drug classes was performed. Several databases, including DrugBank, MESH, and the NIH Drug Information Portal were used to investigate trends in agent classes. Results: Our novel approach unveiled that 0.5% of the trials we identified were hidden duplicates, primarily originating from the EUCTR database, which accounted for 82.9% of these duplicates. However, the overall number of hidden duplicates within the ICTRP seems to be decreasing. In total, 689 793 trials (478 345 interventional) were registered in the ICTRP between 1990 and 2020, surpassing the count of trials in ClinicalTrials.gov (362 500 trials by the end of 2020). We identified 4 865 unique agents in trials with DrugBank, whereas 2 633 agents were identified with NIH Drug Information Portal data. After the ClinicalTrials.gov, EUCTR had the most trials in the ICTRP, followed by CTRI, IRCT, CHiCTR, and ISRCTN. CHiCTR displayed a significant surge in trial registration around 2015, while CTRI experienced rapid growth starting in 2016. Conclusion: This study highlights both the strengths and weaknesses of using the ICTRP as a data source for analyzing trends in clinical trials, and emphasizes the value of utilizing multiple registries for a comprehensive analysis.
Collapse
Affiliation(s)
- Eugenia D. Namiot
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Aleksandr V. Sokolov
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Vadim V. Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, Russia
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
25
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|