1
|
Steindl A, Valiente M. Potential of ex vivo organotypic slice cultures in neuro-oncology. Neuro Oncol 2024:noae195. [PMID: 39504579 DOI: 10.1093/neuonc/noae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Over recent decades, in vitro and in vivo models have significantly advanced brain cancer research; however, each presents distinct challenges for accurately mimicking in situ conditions. In response, organotypic slice cultures have emerged as a promising model recapitulating precisely specific in vivo phenotypes through an ex vivo approach. Ex vivo organotypic brain slice models can integrate biological relevance and patient-specific variability early in drug discovery, thereby aiming for more precise treatment stratification. However, the challenges of obtaining representative fresh brain tissue, ensuring reproducibility, and maintaining essential central nervous system (CNS)-specific conditions reflecting the in situ situation over time have limited the direct application of ex vivo organotypic slice cultures in robust clinical trials. In this review, we explore the benefits and possible limitations of ex vivo organotypic brain slice cultures in neuro-oncological research. Additionally, we share insights from clinical experts in neuro-oncology on how to overcome these current limitations and improve the practical application of organotypic brain slice cultures beyond academic research.
Collapse
Affiliation(s)
- Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
2
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2024:oyae227. [PMID: 39401002 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke's Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
3
|
Liang J, He P. A reference for selecting an appropriate method for generating glioblastoma organoids from the application perspective. Discov Oncol 2024; 15:459. [PMID: 39292297 PMCID: PMC11411047 DOI: 10.1007/s12672-024-01346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma organoids (GBOs) serve as a powerful and reliable tool to study glioblastoma stem cells (GSCs) and glioblastoma (GBM). GBOs can be derived from different materials using different methods. To identify the predominant generation methods and the most applications of GBOs, we searched four databases (PubMed, Embase, Web of Science, and Wiley Online Laboratory) from August 2021 to August 2023. After screening, 42 out of 295 articles were included and analyzed. GBOs in these articles were generated using only one material, such as tumor tissues, tumor cells, and gene-edited multifunctional stem cells, or simultaneously using two materials, such as tumor cells and normal organoids. Methodologically, direct cultivation of GBM cells or tissues was the most commonly used method to generate GBOs. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were the frequently used multifunctional stem cells to generate GBOs by simultaneously silencing P53, NF1, and PTEN using CRISPR/Cas9. In terms of applications, GBOs generated by direct cultivation of GBM tissue had the most applications, including molecular mechanisms, therapy, and culture technique. This review provides a theoretical reference for selecting an appropriate method to generate GBOs when studying GSCs and GBM.
Collapse
Affiliation(s)
- Jing Liang
- Department of Operating Room, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Peng He
- Department of Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Jones CG, Vanderlinden A, Rominiyi O, Collis SJ. Development and Optimisation of Tumour Treating Fields (TTFields) Delivery within 3D Primary Glioma Stem Cell-like Models of Spatial Heterogeneity. Cancers (Basel) 2024; 16:863. [PMID: 38473223 DOI: 10.3390/cancers16050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma is an aggressive, incurable brain cancer with poor five-year survival rates of around 13% despite multimodal treatment with surgery, DNA-damaging chemoradiotherapy and the recent addition of Tumour Treating Fields (TTFields). As such, there is an urgent need to improve our current understanding of cellular responses to TTFields using more clinically and surgically relevant models, which reflect the profound spatial heterogeneity within glioblastoma, and leverage these biological insights to inform the rational design of more effective therapeutic strategies incorporating TTFields. We have recently reported the use of preclinical TTFields using the inovitroTM system within 2D glioma stem-like cell (GSC) models and demonstrated significant cytotoxicity enhancement when co-applied with a range of therapeutically approved and preclinical DNA damage response inhibitors (DDRi) and chemoradiotherapy. Here we report the development and optimisation of preclinical TTFields delivery within more clinically relevant 3D scaffold-based primary GSC models of spatial heterogeneity, and highlight some initial enhancement of TTFields potency with temozolomide and clinically approved PARP inhibitors (PARPi). These studies, therefore, represent an important platform for further preclinical assessment of TTFields-based therapeutic strategies within clinically relevant 3D GSC models, aimed towards accelerating clinical trial implementation and the ultimate goal of improving the persistently dire survival rates for these patients.
Collapse
Affiliation(s)
- Callum G Jones
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | - Aurelie Vanderlinden
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ola Rominiyi
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
- Division of Neuroscience, University of Sheffield Medical School, Sheffield S10 2HQ, UK
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Spencer J Collis
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
| |
Collapse
|
5
|
Vanderlinden A, Jones CG, Myers KN, Rominiyi O, Collis SJ. DNA damage response inhibitors enhance tumour treating fields (TTFields) potency in glioma stem-like cells. Br J Cancer 2023; 129:1829-1840. [PMID: 37777579 PMCID: PMC10667536 DOI: 10.1038/s41416-023-02454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade gliomas are primary brain cancers with unacceptably low and persistent survival rates of 10-16 months for WHO grade 4 gliomas over the last 40 years, despite surgical resection and DNA-damaging chemo-radiotherapy. More recently, tumour-treating fields therapy (TTFields) has demonstrated modest survival benefit and been clinically approved in several countries. TTFields is thought to mediate anti-cancer activity by primarily disrupting mitosis. However, recent data suggest that TTFields may also attenuate DNA damage repair and replication fork dynamics, providing a potential platform for therapeutic combinations incorporating standard-of-care treatments and targeted DNA damage response inhibitors (DDRi). METHODS We have used patient-derived, typically resistant, glioma stem-like cells (GSCs) in combination with the previously validated preclinical Inovitro™ TTFields system together with a number of therapeutic DDRi. RESULTS We show that TTFields robustly activates PARP- and ATR-mediated DNA repair (including PARylation and CHK1 phosphorylation, respectively), whilst combining TTFields with PARP1 or ATR inhibitor treatment leads to significantly reduced clonogenic survival. The potency of each of these strategies is further enhanced by radiation treatment, leading to increased amounts of DNA damage with profound delay in DNA damage resolution. CONCLUSION To our knowledge, our findings represent the first report of TTFields applied with clinically approved or in-trial DDRi in GSC models and provides a basis for translational studies toward multimodal DDRi/TTFields-based therapeutic strategies for patients with these currently incurable tumours.
Collapse
Affiliation(s)
- Aurelie Vanderlinden
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Katie N Myers
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Ola Rominiyi
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Division of Neuroscience, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK.
| | - Spencer J Collis
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
| |
Collapse
|
6
|
Wen J, Liu F, Cheng Q, Weygant N, Liang X, Fan F, Li C, Zhang L, Liu Z. Applications of organoid technology to brain tumors. CNS Neurosci Ther 2023; 29:2725-2743. [PMID: 37248629 PMCID: PMC10493676 DOI: 10.1111/cns.14272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Lacking appropriate model impedes basic and preclinical researches of brain tumors. Organoids technology applying on brain tumors enables great recapitulation of the original tumors. Here, we compared brain tumor organoids (BTOs) with common models including cell lines, tumor spheroids, and patient-derived xenografts. Different BTOs can be customized to research objectives and particular brain tumor features. We systematically introduce the establishments and strengths of four different BTOs. BTOs derived from patient somatic cells are suitable for mimicking brain tumors caused by germline mutations and abnormal neurodevelopment, such as the tuberous sclerosis complex. BTOs derived from human pluripotent stem cells with genetic manipulations endow for identifying and understanding the roles of oncogenes and processes of oncogenesis. Brain tumoroids are the most clinically applicable BTOs, which could be generated within clinically relevant timescale and applied for drug screening, immunotherapy testing, biobanking, and investigating brain tumor mechanisms, such as cancer stem cells and therapy resistance. Brain organoids co-cultured with brain tumors (BO-BTs) own the greatest recapitulation of brain tumors. Tumor invasion and interactions between tumor cells and brain components could be greatly explored in this model. BO-BTs also offer a humanized platform for testing the therapeutic efficacy and side effects on neurons in preclinical trials. We also introduce the BTOs establishment fused with other advanced techniques, such as 3D bioprinting. So far, over 11 brain tumor types of BTOs have been established, especially for glioblastoma. We conclude BTOs could be a reliable model to understand brain tumors and develop targeted therapies.
Collapse
Affiliation(s)
- Jie Wen
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fangkun Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Nathaniel Weygant
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine in GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Xisong Liang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fan Fan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Chuntao Li
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Liyang Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Mann B, Zhang X, Bell N, Adefolaju A, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Buckley A, Lettry V, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. A living ex vivo platform for functional, personalized brain cancer diagnosis. Cell Rep Med 2023; 4:101042. [PMID: 37192626 PMCID: PMC10313921 DOI: 10.1016/j.xcrm.2023.101042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Functional precision medicine platforms are emerging as promising strategies to improve pre-clinical drug testing and guide clinical decisions. We have developed an organotypic brain slice culture (OBSC)-based platform and multi-parametric algorithm that enable rapid engraftment, treatment, and analysis of uncultured patient brain tumor tissue and patient-derived cell lines. The platform has supported engraftment of every patient tumor tested to this point: high- and low-grade adult and pediatric tumor tissue rapidly establishes on OBSCs among endogenous astrocytes and microglia while maintaining the tumor's original DNA profile. Our algorithm calculates dose-response relationships of both tumor kill and OBSC toxicity, generating summarized drug sensitivity scores on the basis of therapeutic window and allowing us to normalize response profiles across a panel of U.S. Food and Drug Administration (FDA)-approved and exploratory agents. Summarized patient tumor scores after OBSC treatment show positive associations to clinical outcomes, suggesting that the OBSC platform can provide rapid, accurate, functional testing to ultimately guide patient care.
Collapse
Affiliation(s)
- Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah Bell
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adebimpe Adefolaju
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Department of Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rajaneekar Dasari
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna Kanchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Valdivia
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Buckley
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vivien Lettry
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carolyn Quinsey
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasmeen Rauf
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah Cassidy
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen Rego
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuchao Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Denise Dunn
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Albert Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Andrew B Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Nickl V, Eck J, Goedert N, Hübner J, Nerreter T, Hagemann C, Ernestus RI, Schulz T, Nickl RC, Keßler AF, Löhr M, Rosenwald A, Breun M, Monoranu CM. Characterization and Optimization of the Tumor Microenvironment in Patient-Derived Organotypic Slices and Organoid Models of Glioblastoma. Cancers (Basel) 2023; 15:2698. [PMID: 37345035 DOI: 10.3390/cancers15102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future.
Collapse
Affiliation(s)
- Vera Nickl
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Juliana Eck
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Nicolas Goedert
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Julian Hübner
- Department of Hematology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Thomas Nerreter
- Department of Hematology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tim Schulz
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Robert Carl Nickl
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
9
|
Tumor Treating Fields (TTFields) Induce Cell Junction Alterations in a Human 3D In Vitro Model of the Blood-Brain Barrier. Pharmaceutics 2023; 15:pharmaceutics15010185. [PMID: 36678814 PMCID: PMC9861254 DOI: 10.3390/pharmaceutics15010185] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood-brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies.
Collapse
|