1
|
El-Kadi RA, AbdelKader NF, Zaki HF, Kamel AS. Vilazodone Alleviates Neurogenesis-Induced Anxiety in the Chronic Unpredictable Mild Stress Female Rat Model: Role of Wnt/β-Catenin Signaling. Mol Neurobiol 2024; 61:9060-9077. [PMID: 38584231 PMCID: PMC11496359 DOI: 10.1007/s12035-024-04142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Defective β-catenin signaling is accompanied with compensatory neurogenesis process that may pave to anxiety. β-Catenin has a distinct role in alleviating anxiety in adolescence; however, it undergoes degradation by the degradation complex Axin and APC. Vilazodone (VZ) is a fast, effective antidepressant with SSRI activity and 5-HT1A partial agonism that amends somatic and/or psychic symptoms of anxiety. Yet, there is no data about anxiolytic effect of VZ on anxiety-related neurogenesis provoked by stress-reduced β-catenin signaling. Furthermore, females have specific susceptibility toward psychopathology. The aim of the present study is to uncover the molecular mechanism of VZ relative to Wnt/β-catenin signaling in female rats. Stress-induced anxiety was conducted by subjecting the rats to different stressful stimuli for 21 days. On the 15th day, stressed rats were treated with VZ(10 mg/kg, p.o.) alone or concomitant with the Wnt inhibitor: XAV939 (0.1 mg/kg, i.p.). Anxious rats showed low β-catenin level turned over by Axin-1 with unanticipated reduction of APC pursued with elevated protein levels of neurogenesis-stimulating proteins: c-Myc and pThr183-Erk likewise gene expressions of miR-17-5p and miR-18. Two weeks of VZ treatment showed anxiolytic effect figured by alleviation of hippocampal histological examination. VZ protected β-catenin signal via reduction in Axin-1 and elevation of APC conjugated with modulation of β-catenin downstream targets. The cytoplasmic β-catenin turnover by Axin-1 was restored by XAV939. Herein, VZ showed anti-anxiety effect, which may be in part through regaining the balance of the reduced β-catenin and its subsequent exaggerated response of p-Erk, c-Myc, Dicer-1, miR-17-5p, and miR-18.
Collapse
Affiliation(s)
- Rana A El-Kadi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Alexandria University Hospitals, Champollion Street, El-Khartoum Square, El Azareeta, Alexandria, 21131, Egypt
| | - Noha F AbdelKader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Moradi A, Sahebi U, Nazarian H, Majdi L, Bayat M. Oncogenic MicroRNAs: Key players in human prostate cancer pathogenesis, a narrative review. Urol Oncol 2024:S1078-1439(24)00641-0. [PMID: 39341711 DOI: 10.1016/j.urolonc.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Prostate cancer (PC) is a leading cause of cancer-related mortality in men worldwide, and identifying key molecular players in its pathogenesis is essential for advancing effective diagnosis and therapy. MicroRNAs (miRNAs) have recently emerged as significant molecules involved in the progression of various cancers. As noncoding RNAs, miRNAs play a vital role in regulating gene expression and are implicated in several aspects of cancer pathogenesis. In the context of human PC, growing evidence suggests that certain miRNAs with oncogenic properties are key players in the initiation, progression, and metastasis of the disease. In conclusion, dysregulated miRNAs are critical in prostate cancer progression, influencing key cellular processes. Oncogenic miRNAs exhibit diagnostic and therapeutic potential in PC. Targeting these miRNAs presents novel treatment avenues, but further research is needed to fully understand their clinical utility. Additional investigation into the mechanisms of miRNA regulation and their interactions with other signaling pathways is necessary to comprehensively understand the role of oncogenic miRNAs in PC and to develop effective treatments for this disease. Overall, substantiating the role of oncogenic miRNAs in PC pathogenesis provides valuable insights into the mechanisms underlying the disease and may lead to the development of novel targeted therapies for improved patient outcomes.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Unes Sahebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Leila Majdi
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville in Louisville, KY; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran.
| |
Collapse
|
3
|
Meyer NH, Kotnik N, Noubissi Nzeteu GA, van Kempen LC, Mastik M, Bockhorn M, Troja A. Unraveling the MicroRNA tapestry: exploring the molecular dynamics of locoregional recurrent rectal cancer. Front Oncol 2024; 14:1407217. [PMID: 39070144 PMCID: PMC11272531 DOI: 10.3389/fonc.2024.1407217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Colorectal cancer (CRC) ranks as the third most prevalent malignancy globally, with a concerning rise in incidence among young adults. Despite progress in understanding genetic predispositions and lifestyle risk factors, the intricate molecular mechanisms of CRC demand exploration. MicroRNAs (miRNAs) emerge as key regulators of gene expression and their deregulation in tumor cells play pivotal roles in cancer progression. Methods NanoString's nCounter technology was utilized to measure the expression of 827 cancer-related miRNAs in tumor tissue and adjacent non-involved normal colon tissue from five patients with locoregional CRC progression. These expression profiles were then compared to those from the primary colon adenocarcinoma (COAD) cohort in The Cancer Genome Atlas (TCGA). Results and discussion Intriguingly, 156 miRNAs showed a contrasting dysregulation pattern in reccurent tumor compared to their expression in the TCGA COAD cohort. This observation implies dynamic alterations in miRNA expression patterns throughout disease progression. Our exploratory study contributes to understanding the regulatory landscape of recurrent CRC, emphasizing the role of miRNAs in disease relapse. Notable findings include the prominence of let-7 miRNA family, dysregulation of key target genes, and dynamic changes in miRNA expression patterns during progression. Univariate Cox proportional hazard models highlighted miRNAs associated with adverse outcomes and potential protective factors. The study underscores the need for more extensive investigations into miRNA dynamics during tumor progression and the value of stage specific biomarkers for prognosis.
Collapse
Affiliation(s)
- N. Helge Meyer
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gaetan Aime Noubissi Nzeteu
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Mirjam Mastik
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maximilian Bockhorn
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| | - Achim Troja
- Department of Human Medicine, School of Medicine and Health Sciences, Klinikum Oldenburg, Carl von Ossietzky Universität Oldenburg and University Hospital for General and Visceral Surgery, Oldenburg, Germany
| |
Collapse
|
4
|
SHAKIBA ELHAM, BOROOMAND SETI, KHERADMAND KIA SIMA, HEDAYATI MEHDI. MicroRNAs in thyroid cancer with focus on medullary thyroid carcinoma: potential therapeutic targets and diagnostic/prognostic markers and web based tools. Oncol Res 2024; 32:1011-1019. [PMID: 38827323 PMCID: PMC11136686 DOI: 10.32604/or.2024.049235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 06/04/2024] Open
Abstract
This review aimed to describe the inculpation of microRNAs (miRNAs) in thyroid cancer (TC) and its subtypes, mainly medullary thyroid carcinoma (MTC), and to outline web-based tools and databases for bioinformatics analysis of miRNAs in TC. Additionally, the capacity of miRNAs to serve as therapeutic targets and biomarkers in TC management will be discussed. This review is based on a literature search of relevant articles on the role of miRNAs in TC and its subtypes, mainly MTC. Additionally, web-based tools and databases for bioinformatics analysis of miRNAs in TC were identified and described. MiRNAs can perform as oncomiRs or antioncoges, relying on the target mRNAs they regulate. MiRNA replacement therapy using miRNA mimics or antimiRs that aim to suppress the function of certain miRNAs can be applied to correct miRNAs aberrantly expressed in diseases, particularly in cancer. MiRNAs are involved in the modulation of fundamental pathways related to cancer, resembling cell cycle checkpoints and DNA repair pathways. MiRNAs are also rather stable and can reliably be detected in different types of biological materials, rendering them favorable diagnosis and prognosis biomarkers as well. MiRNAs have emerged as promising tools for evaluating medical outcomes in TC and as possible therapeutic targets. The contribution of miRNAs in thyroid cancer, particularly MTC, is an active area of research, and the utility of web applications and databases for the biological data analysis of miRNAs in TC is becoming increasingly important.
Collapse
Affiliation(s)
- ELHAM SHAKIBA
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, 1651153511, Iran
| | - SETI BOROOMAND
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, V5Z 1M9, Canada
| | - SIMA KHERADMAND KIA
- Department of Blood Cell Research, Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, 1006 AN, The Netherlands
| | - MEHDI HEDAYATI
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| |
Collapse
|
5
|
Murtaza B, Li X, Nawaz MY, Saleemi MK, Li G, Jin B, Wang L, Xu Y. Toxicodynamic of combined mycotoxins: MicroRNAs and acute-phase proteins as diagnostic biomarkers. Compr Rev Food Sci Food Saf 2024; 23:e13338. [PMID: 38629461 DOI: 10.1111/1541-4337.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
6
|
Mencucci MV, Abba MC, Maiztegui B. Decoding the role of microRNA dysregulation in the interplay of pancreatic cancer and type 2 diabetes. Mol Cell Endocrinol 2024; 583:112144. [PMID: 38161049 DOI: 10.1016/j.mce.2023.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
This study examines the complex relationship between pancreatic cancer (PC) and type 2 diabetes (T2D) by focusing on the role of microRNAs (miRNAs). miRNAs are small non-coding RNAs that regulate gene expression and have been implicated in many diseases, including T2D and cancer. To begin, we conducted a literature review to identify miRNAs associated with the PC-T2D link. However, we found limited research on this specific association, with most studies focusing on the antitumor effects of metformin. Furthermore, we performed a bioinformatics analysis to identify new potential miRNAs that might be relevant in the context of PC-T2D. First, we identified miRNAs and gene expression alterations common to both diseases using publicly available datasets. Subsequently, we performed an integrative analysis between the identified miRNAs and genes alterations. As a result, we identified nine miRNAs that could potentially play an important role in the interplay between PC and T2D. These miRNAs have the potential to influence nearby cells and distant tissues, affecting critical processes like extracellular matrix remodeling and cell adhesion, ultimately contributing to the development of T2D or PC. Taken together, these analyses underscore the importance of further exploring the role of miRNAs in the complex interplay of PC and T2D.
Collapse
Affiliation(s)
- María Victoria Mencucci
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CeAs CICPBA), Facultad de Ciencias Médicas UNLP, 60 y 120 (s/n), 1900 La Plata, Argentina.
| | - Martín Carlos Abba
- CINIBA, Centro de Investigaciones Inmunológicas Básicas y Aplicadas (UNLP-CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina.
| | - Bárbara Maiztegui
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET-CeAs CICPBA), Facultad de Ciencias Médicas UNLP, 60 y 120 (s/n), 1900 La Plata, Argentina.
| |
Collapse
|
7
|
Sayed GI, Solyman M, El Gedawy G, Moemen YS, Aboul-Ella H, Hassanien AE. Circulating miRNA's biomarkers for early detection of hepatocellular carcinoma in Egyptian patients based on machine learning algorithms. Sci Rep 2024; 14:4989. [PMID: 38424116 PMCID: PMC10904762 DOI: 10.1038/s41598-024-54795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Liver cancer, which ranks sixth globally and third in cancer-related deaths, is caused by chronic liver disorders and a variety of risk factors. Despite therapeutic improvements, the prognosis for Hepatocellular Carcinoma (HCC) remains poor, with a 5-year survival rate for advanced cases of less than 12%. Although there is a noticeable decrease in the frequency of cases, liver cancer remains a significant worldwide health concern, with estimates surpassing one million cases by 2025. The prevalence of HCC has increased in Egypt, and it includes several neoplasms with distinctive messenger RNA (mRNA) and microRNA (miRNA) expression profiles. In HCC patients, certain miRNAs, such as miRNA-483-5P and miRNA-21, are upregulated, whereas miRNA-155 is elevated in HCV-infected people, encouraging hepatocyte proliferation. Short noncoding RNAs called miRNAs in circulation have the potential as HCC diagnostic and prognostic markers. This paper proposed a model for examining circulating miRNAs as diagnostic and predictive markers for HCC in Egyptian patients and their clinical and pathological characteristics. The proposed HCC detection model consists of three main phases: data preprocessing phase, feature selection based on the proposed Binary African Vulture Optimization Algorithm (BAVO) phase, and finally, classification as well as cross-validation phase. The first phase namely the data preprocessing phase tackle the main problems associated with the adopted datasets. In the feature selection based on the proposed BAVO algorithm phase, a new binary version of the BAVO swarm-based algorithm is introduced to select the relevant markers for HCC. Finally, in the last phase, namely the classification and cross-validation phase, the support vector machine and k-folds cross-validation method are utilized. The proposed model is evaluated on three studies on Egyptians who had HCC. A comparison between the proposed model and traditional statistical studies is reported to demonstrate the superiority of using the machine learning model for evaluating circulating miRNAs as diagnostic markers of HCC. The specificity and sensitivity for differentiation of HCC cases in comparison with the statistical-based method for the first study were 98% against 88% and 99% versus 92%, respectively. The second study revealed the sensitivity and specificity were 97.78% against 90% and 98.89% versus 92.5%, respectively. The third study reported 83.2% against 88.8% and 95.80% versus 92.4%, respectively. Additionally, the results show that circulating miRNA-483-5p, 21, and 155 may be potential new prognostic and early diagnostic biomarkers for HCC.
Collapse
Affiliation(s)
- Gehad Ismail Sayed
- School of Computer Science, Canadian International College (CIC), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Mona Solyman
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Gamalat El Gedawy
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menofia University, Menofia, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Yasmine S Moemen
- Clinical Pathology Department, National Liver Institute, Menofia University, Menofia, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- College of Business Administration, Kuwait University, Al Shadadiya, Kuwait
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
8
|
Sun QH, Kuang ZY, Zhu GH, Ni BY, Li J. Multifaceted role of microRNAs in gastric cancer stem cells: Mechanisms and potential biomarkers. World J Gastrointest Oncol 2024; 16:300-313. [PMID: 38425402 PMCID: PMC10900144 DOI: 10.4251/wjgo.v16.i2.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
MicroRNAs (miRNAs) have received much attention in the past decade as potential key epigenomic regulators of tumors and cancer stem cells (CSCs). The abnormal expression of miRNAs is responsible for different phenotypes of gastric cancer stem cells (GCSCs). Some specific miRNAs could be used as promising biomarkers and therapeutic targets for the identification of GCSCs. This review summarizes the coding process and biological functions of miRNAs and demonstrates their role and efficacy in gastric cancer (GC) metastasis, drug resistance, and apoptosis, especially in the regulatory mechanism of GCSCs. It shows that the overexpression of onco-miRNAs and silencing of tumor-suppressor miRNAs can play a role in promoting or inhibiting tumor metastasis, apart from the initial formation of GC. It also discusses the epigenetic regulation and potential clinical applications of miRNAs as well as the role of CSCs in the pathogenesis of GC. We believe that this review may help in designing novel therapeutic approaches for GC.
Collapse
Affiliation(s)
- Qian-Hui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zi-Yu Kuang
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Guang-Hui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bao-Yi Ni
- Department of Oncology, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
9
|
Makineli S, Vriens MR, Witkamp AJ, van Diest PJ, Moelans CB. The Diagnostic Value of microRNA Expression Analysis in Detecting Intraductal Papillomas in Patients with Pathological Nipple Discharge. Int J Mol Sci 2024; 25:1812. [PMID: 38339089 PMCID: PMC10855314 DOI: 10.3390/ijms25031812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with pathological nipple discharge (PND) often undergo local surgical procedures because standard radiologic imaging fails to identify the underlying cause. MicroRNA (MiRNA) expression analysis of nipple fluid holds potential for distinguishing between breast diseases. This study aimed to compare miRNA expression levels between nipple fluids from patients with PND to identify possible relevant miRNAs that could differentiate between intraductal papillomas and no abnormalities in the breast tissue. Nipple fluid samples from patients with PND without radiological and pathological suspicion for malignancy who underwent a ductoscopy procedure were analyzed. We used univariate and multivariate regression analyses to identify nipple fluid miRNAs differing between pathologically confirmed papillomas and breast tissue without abnormalities. A total of 27 nipple fluid samples from patients with PND were included for miRNA expression analysis. Out of the 22 miRNAs examined, only miR-145-5p was significantly differentially expressed (upregulated) in nipple fluid from patients with an intraductal papilloma compared to patients showing no breast abnormalities (OR 4.76, p = 0.046), with a diagnostic accuracy of 92%. miR-145-5p expression in nipple fluid differs for intraductal papillomas and breast tissue without abnormalities and, therefore, has potential as a diagnostic marker to signal presence of papillomas in PND patients. However, further refinement and validation in clinical trials are necessary to establish its clinical applicability.
Collapse
Affiliation(s)
- Seher Makineli
- Department of Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.R.V.); (A.J.W.)
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Menno R. Vriens
- Department of Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.R.V.); (A.J.W.)
| | - Arjen J. Witkamp
- Department of Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.R.V.); (A.J.W.)
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
10
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
11
|
Zhang L, Zhang Z, Zheng X, Lu Y, Dai L, Li W, Liu H, Wen S, Xie Q, Zhang X, Wang P, Wu Y, Gao W. A novel microRNA panel exhibited significant potential in evaluating the progression of laryngeal squamous cell carcinoma. Noncoding RNA Res 2023; 8:550-561. [PMID: 37602318 PMCID: PMC10432973 DOI: 10.1016/j.ncrna.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a common cancer of the head and neck in humans. The 5-years survival rate of patients with LSCC have declined in the past four decades. microRNAs (miRNAs) has been reported to be capable of predicting the prognosis outcomes of patients with different cancers. However, there are no reports on the usage of multi-miRNAs model as signature for the diagnosis or prognosis of LSCC. Methods To establish the miRNAs expression-associated model for diagnosis, prognosis prediction and aided therapy of patients with LSCC, the present study enrolled 107 patients with LSCC in clinic and obtained 117 LSCC samples data from TCGA database for evaluation, respectively. Next generation sequencing (NGS), raw data processing, the least absolute shrinkage and selection operator algorithm, Cox regression analysis, construction of nomogram and cell function assays (including proliferation, migration and invasion assays) were sequentially performed. Results There were massively dysregulated miRNAs in the LSCC compared to normal tissues. A six-miRNAs signature consists of miR-137-3p, miR-3934-5p, miR-1276, miR-129-5p, miR-7-5p and miR-105-5p was built for prognosis prediction of LSCC patients. The six-miRNAs signature is strongly associated with the poor overall survival (OS, p = 2.5e-05, HR: 4.30 [2.20-8.50]), progression free interval (PFI, p = 0.025, HR: 1.94 [1.08-3.46]) and disease specific survival (DSS, p = 1.1e-05, HR: 5.00 [2.50-10.00]). A nomogram for prediction of 2-, 3- and 5-years OS was also developed based on the six-miRNAs signature and clinical features. Furthermore, blocking the function of each of the six miRNAs inhibited proliferation, invasion and migration of LSCC cells. Conclusions The performance of six-miRNAs signature described in the current study demonstrated remarkable potential for progression assessment of LSCC. Moreover, the six-miRNAs signature may serve as predictive tool for prognosis and therapeutic targets of LSCC in clinic.
Collapse
Affiliation(s)
- Linshi Zhang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Zhe Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong, PR China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Jinzhou Medical University, Jinzhou, 121011, Liaoning, PR China
| | - Li Dai
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, PR China
| | - Wenqi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518055, Guangdong, PR China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, PR China
| | - Qiuping Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Xiangmin Zhang
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| | - Ping Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| |
Collapse
|
12
|
Xu X, Gong C, Wang Y, Yin Z, Wang X, Hu Y, Fang Z. Bioinformatics analysis and experimental validation identified HMGA2/microRNA-200c-3p/LSAMP/Wnt axis as an immunological factor of patients with colorectal cancer. Am J Cancer Res 2023; 13:3898-3920. [PMID: 37818072 PMCID: PMC10560921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/15/2023] [Indexed: 10/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant cancers. The tumor microenvironment (TME) plays an important role in tumor progression and affects the prognosis of CRC patients. However, the TME has been poorly characterized and studies aiming to identify the biomarkers or combined risk scores of CRC patients are limited. Here, we overlapped differentially expressed genes and stromal/immune-score-related modules to identify immune- and stromal-related genes in CRC patients. These genes were fed into the LASSO-Cox regression analysis for dimensionality reduction to establish a TME-associated risk model. A high TME-associated risk score was identified as an unfavorable prognostic factor in The Cancer Genome Atlas and Gene Expression Omnibus datasets, as well as in a subgroup analysis, stratified by gender, age, microsatellite instability, and tumor lymph node metastasis stage. Ten genes were mutated more frequently in the high TME-associated risk score group; these mutations may be related to changes in the TME and the response to immunotherapy. Thus, a lower TME-associated risk score may indicate a better response to immunotherapy and longer overall survival. Experimental validation demonstrated that LSAMP, a novel TME-associated-risk-score-related gene, increased sensitivity of CRC to CD8+-T-cell-mediated cytotoxicity. A mechanistic investigation showed that the HMGA2/microRNA-200c-3p/LSAMP/Wnt axis was an immunological factor in CRC patients. To conclusion, we demonstrated that the TME-associated risk score model could be a reliable prognostic biomarker for CRC patients and highlighted the significance of the HMGA2/microRNA-200c-3p/LSAMP/Wnt axis in the oncoimmunology of CRC.
Collapse
Affiliation(s)
- Xi Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China
| | - Yunfeng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Zhidong Yin
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| | - Xiaogang Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, Zhejiang, China
| | - Yanyan Hu
- Central Laboratory, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| | - Zejun Fang
- Central Laboratory, Sanmen People’s HospitalSanmen 317100, Zhejiang, China
| |
Collapse
|
13
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
15
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
16
|
Luna Buitrago D, Lovering RC, Caporali A. Insights into Online microRNA Bioinformatics Tools. Noncoding RNA 2023; 9:18. [PMID: 36960963 PMCID: PMC10037614 DOI: 10.3390/ncrna9020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
MicroRNAs (miRNAs) are members of the small non-coding RNA family regulating gene expression at the post-transcriptional level. MiRNAs have been found to have critical roles in various biological and pathological processes. Research in this field has significantly progressed, with increased recognition of the importance of miRNA regulation. As a result of the vast data and information available regarding miRNAs, numerous online tools have emerged to address various biological questions related to their function and influence across essential cellular processes. This review includes a brief introduction to available resources for an investigation covering aspects such as miRNA sequences, target prediction/validation, miRNAs associated with disease, pathway analysis and genetic variants within miRNAs.
Collapse
Affiliation(s)
- Diana Luna Buitrago
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| |
Collapse
|