1
|
Mauro M, Bestiaco N, Zulian E, Markežič MM, Bignolin I, Larese Filon F. Manual dexterity, tactile perception and inflammatory profile in HCWs affected by long Covid: A case - control study. Life Sci 2025; 360:123234. [PMID: 39549937 DOI: 10.1016/j.lfs.2024.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Marcella Mauro
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Trieste, Italy; Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy.
| | - Nicoletta Bestiaco
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Elisa Zulian
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | | | - Ilaria Bignolin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Francesca Larese Filon
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
3
|
He L, Wang Y, Zhu H, Han K, Wei S, Quan T, Li P, Yang B, Sun K, Jin Y, Wang A, Xue X, Zhang L, Liu C, Gao Y, Xu Y. Insoluble proteomics analysis of acute intracranial large vessel occlusive thrombus. J Thromb Haemost 2024:S1538-7836(24)00621-4. [PMID: 39454879 DOI: 10.1016/j.jtha.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Acute large vessel occlusion (LVO) stroke is highly prevalent and severe. Despite thrombolytic therapy, many patients experience substantial complications. Understanding the origins, constituents, and pathologic processes involved in thrombus formation in acute intracranial large artery occlusion is crucial. OBJECTIVES To identify the characteristics of insoluble proteins from different sources of cerebral thrombus. METHODS This study included 13 patients with cardiogenic embolic (CE) thrombus and 15 with large artery atherosclerotic (LAA) thrombus. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry were used to analyze insoluble proteins in thrombi. Bioinformatics analyses explored differential proteins and associated functional pathways. Least absolute shrinkage and selection operator and random forest identified biomarkers for diagnosing thrombus sources, validated by parallel reaction monitoring. RESULTS We constructed an insoluble protein atlas of cerebral thrombi, identifying 6975 insoluble proteins, including 143 extracellular matrix (ECM)-related proteins. The enrichment pathways considerably varied between thrombi from different sources. Inflammation-related pathways, such as acute inflammatory response, along with ECM-related pathways such as laminin interactions, were notably upregulated in LAA compared with CE. Additionally, 2 biomarkers (IDH2 and HSPG2) exhibited strong diagnostic performance (area under the curve = 1) and robustness. CONCLUSION In the insoluble proteomics of thrombus, we highlighted the crucial roles of immune responses and ECM proteins in thrombus formation, providing new insights into its mechanisms and potential drug development. Additionally, we identified 2 biomarkers that offer new methods for determining thrombus sources in patients with LVO.
Collapse
Affiliation(s)
- Liuchang He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yunchao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Hanghang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Kaihao Han
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Wei
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Quan
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Panxing Li
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Yang
- The Neurology Intensive Care Unit, Jiaozuo Second People's Hospital, Jiaozuo, Henan, China
| | - Ke Sun
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, China
| | - Yazhou Jin
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anran Wang
- Department of Neurointerventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinli Xue
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Conghui Liu
- Department of Neurology, Anyang People's Hospital, Anyang, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
5
|
Tran MT. Identification of TIMP1-induced dysregulation of epithelial-mesenchymal transition as a key pathway in inflammatory bowel disease and small intestinal neuroendocrine tumors shared pathogenesis. Front Genet 2024; 15:1376123. [PMID: 39233736 PMCID: PMC11371700 DOI: 10.3389/fgene.2024.1376123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Inflammatory Bowel Disease (IBD) is believed to be a risk factor for Small Intestinal Neuroendocrine Tumors (SI-NET) development; however, the molecular relationship between IBD and SI-NET has yet to be elucidated. In this study, we use a systems biology approach to uncover such relationships. We identified a more similar transcriptomic-wide expression pattern between Crohn's Disease (CD) and SI-NET whereas a higher proportion of overlapping dysregulated genes between Ulcerative Colitis (UC) and SI-NET. Enrichment analysis indicates that extracellular matrix remodeling, particularly in epithelial-mesenchymal transition and intestinal fibrosis mediated by TIMP1, is the most significantly dysregulated pathway among upregulated genes shared between both IBD subtypes and SI-NET. However, this remodeling occurs through distinct regulatory molecular mechanisms unique to each IBD subtype. Specifically, myofibroblast activation in CD and SI-NET is mediated through IL-6 and ciliary-dependent signaling pathways. Contrarily, in UC and SI-NET, this phenomenon is mainly regulated through immune cells like macrophages and the NCAM signaling pathway, a potential gut-brain axis in the context of these two diseases. In both IBD and SI-NET, intestinal fibrosis resulted in significant metabolic reprogramming of fatty acid and glucose to an inflammatory- and cancer-inducing state. This altered metabolic state, revealed through enrichment analysis of downregulated genes, showed dysfunctions in oxidative phosphorylation, gluconeogenesis, and glycogenesis, indicating a shift towards glycolysis. Also known as the Warburg effect, this glycolytic switch, in return, exacerbates fibrosis. Corresponding to enrichment analysis results, network construction and subsequent topological analysis pinpointed 7 protein complexes, 17 hub genes, 11 microRNA, and 1 transcription factor related to extracellular matrix accumulation and metabolic reprogramming that are candidate biomarkers in both IBD and SI-NET. Together, these biological pathways and candidate biomarkers may serve as potential therapeutic targets for these diseases.
Collapse
|
6
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
7
|
Thakore VP, Patel KD, Vora HH, Patel PS, Jain NK. Up-regulation of extracellular-matrix and inflammation related genes in oral squamous cell carcinoma. Arch Oral Biol 2024; 161:105925. [PMID: 38442470 DOI: 10.1016/j.archoralbio.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy with late-presentation, site-specific heterogeneity, and high-propensity for recurrence/metastasis that has shown rise in mortality. Lately, research emphasize on dynamic interactions between tumor-cells and extracellular-matrix components within tumor-microenvironment that promote tissue integrity loss and carcinogenesis. Therefore, OSCC clinical-management is still challenging. DESIGN Present study validated clinical utility of a 13 gene-panel in two chief sub-sites of OSCC: Buccal mucosa squamous cell carcinoma (BMSCC) (N = 50) and Tongue squamous cell carcinoma (TSCC) (N = 52) using qRT-PCR. Principal component analysis and binary logistic regression analysis were applied to acquire definite multi gene models. Protein expression analysis was employed using the Human Protein Atlas, UALCAN and TIMER 2.0 databases to explore potential correlation between immune cells and gene-panels. RESULTS Significant up-regulation of CXCL8, CXCL10, FN1, GBP1, IFIT3, ISG15, MMP1, MMP3, MMP10, PLAU, SERPINE1 and SPP1 except OASL was observed in OSCC tissue in comparison of absolute normal controls. Although, this gene-panel could potentially discriminate OSCC tissues from absolute normal controls as solitarily diagnostic and/or predictive biomarkers, models generated also showed substantial discriminating efficacy. Eight-genes were found to be significantly associated with poor-prognosis on clinico-pathological association. Protein-expression confirmed overexpression of gene-panel and added advantage of being secretory-protein. Importantly, up-regulated genes in our study showed significant relation with immune-cells infiltration suggesting their contribution in immune-escape. CONCLUSION Thus, we propose that the 13 gene-panel could pave the way to effective and personalized clinical-management of OSCC in terms of diagnostic and prognostic measures and thereby as therapeutic targets.
Collapse
Affiliation(s)
- Vaidehi P Thakore
- Life Science Department, School of Science, Gujarat University, Ahmedabad 380009, Gujarat, India; Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Kinjal D Patel
- Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Hemangini H Vora
- Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Prabhudas S Patel
- Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Nayan K Jain
- Life Science Department, School of Science, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
8
|
周 巧, 刘 健, 万 磊, 朱 艳, 齐 亚, 胡 月. [ Xinfeng Capsule alleviates interleukin-1β-induced chondrocyte inflammation and extracellular matrix degradation by regulating the miR-502-5p/TRAF2/NF-κB axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:108-118. [PMID: 38293982 PMCID: PMC10878885 DOI: 10.12122/j.issn.1673-4254.2024.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the mechanism that mediates the inhibitory effect of Xinfeng Capsule (XFC) on interleukin (IL)-1β-induced impairment of chondrocytes. METHODS XFC-medicated serum was collected from SD rats with XFC gavage, and its optimal concentration for chondrocyte treatment was determined using Cell Counting Kit-8 assay and flow cytometry. Dual luciferase reporter analysis was performed to analyze the targeting relationship between miR-502-5p and TRAF2. In cultured human chondrocytes induced with IL-1β, the effects of transfection with miR-502-5p inhibitor and XFC-medicated serum, alone or in combination, on expression levels of IL-1β, tumor necrosis factor-α (TNF-α), IL-4, and IL-10 were examined with ELISA, and the changes in the expressions of collagen type Ⅱ alpha 1 (COL2A1), matrix metalloproteinase 13 (MMP13), adisintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and miR-502-5p/TRAF2/NF-κB axis gene expression were detected using RT-qPCR, Western blotting, and immunofluorescence assay. RESULTS In cultured human chondrocytes, treatment with IL-1β significantly decreased the cell viability, increased cell apoptosis rate, lowered miR-502-5p, IL-4, IL-10, and COL2A1 expressions, and enhanced IL-1β, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 expressions (P < 0.05), and these changes were significantly improved by treatment with XFC-medicated serum at the optimal concentration of 20% (P < 0.05). Transfection of the chondrocytes with miR-502-5p inhibitor resulted in elevated expressions of IL-1β, TNF-α, ADAMTS5, MMP13, TRAF2, and NF-κB p65 and lowered expressions of miR-502-5p, IL-4, IL-10, and COL2A1, and XFC-medicated serum obviously reversed the effects of miR-502-5p inhibitor. CONCLUSION XFC can inhibit IL-1β-induced inflammatory response and ECM degradation in cultured human chondrocytes possibly by regulating the miR-502-5p/TRAF2/NF-κB axis.
Collapse
Affiliation(s)
- 巧 周
- 安徽中医药大学第二附属医院,安徽 合肥 230061Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
- 安徽中医药大学,安徽 合肥 230012Anhui University of Chinese Medicine, Hefei 230012, China
| | - 健 刘
- 安徽中医药大学第一附属医院,安徽 合肥 230031First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 磊 万
- 安徽中医药大学第一附属医院,安徽 合肥 230031First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 艳 朱
- 安徽中医药大学第二附属医院,安徽 合肥 230061Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 亚军 齐
- 安徽中医药大学,安徽 合肥 230012Anhui University of Chinese Medicine, Hefei 230012, China
| | - 月迪 胡
- 安徽中医药大学,安徽 合肥 230012Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
9
|
Moutin EB, Bons J, Giavara G, Lourenco F, Pan D, Burton JB, Shah S, Colombé M, Gascard P, Tlsty T, Schilling B, Winton DJ. Extracellular Matrix Orchestration of Tissue Remodeling in the Chronically Inflamed Mouse Colon. Cell Mol Gastroenterol Hepatol 2024; 17:639-656. [PMID: 38199279 PMCID: PMC10905044 DOI: 10.1016/j.jcmgh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Chronic inflammatory illnesses are debilitating and recurrent conditions associated with significant comorbidities, including an increased risk of developing cancer. Extensive tissue remodeling is a hallmark of such illnesses, and is both a consequence and a mediator of disease progression. Despite previous characterization of epithelial and stromal remodeling during inflammatory bowel disease, a complete understanding of its impact on disease progression is lacking. METHODS A comprehensive proteomic pipeline using data-independent acquisition was applied to decellularized colon samples from the Muc2 knockout (Muc2KO) mouse model of colitis for an in-depth characterization of extracellular matrix remodeling. Unique proteomic profiles of the matrisomal landscape were extracted from prepathologic and overt colitis. Integration of proteomics and transcriptomics data sets extracted from the same murine model produced network maps describing the orchestrating role of matrisomal proteins in tissue remodeling during the progression of colitis. RESULTS The in-depth proteomic workflow used here allowed the addition of 34 proteins to the known colon matrisomal signature. Protein signatures of prepathologic and pathologic colitic states were extracted, differentiating the 2 states by expression of small leucine-rich proteoglycans. We outlined the role of this class and other matrisomal proteins in tissue remodeling during colitis, as well as the potential for coordinated regulation of cell types by matrisomal ligands. CONCLUSIONS Our work highlights a central role for matrisomal proteins in tissue remodeling during colitis and defines orchestrating nodes that can be exploited in the selection of therapeutic targets.
Collapse
Affiliation(s)
- Elisa B Moutin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California
| | - Giada Giavara
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Filipe Lourenco
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Deng Pan
- Department of Pathology, University of California, San Francisco, California
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, California
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, California
| | - Thea Tlsty
- Department of Pathology, University of California, San Francisco, California
| | | | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Pittokopitou S, Mavrogianni D, Pergialiotis V, Pappa KI, Antsaklis P, Theodora M, Sindos M, Papapanagiotou A, Domali A, Stavros S, Drakakis P, Daskalakis G. Expression of Stemness Markers in the Cervical Smear of Patients with Cervical Insufficiency. Cells 2023; 12:cells12081183. [PMID: 37190092 DOI: 10.3390/cells12081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The presence of stem cells has been previously described in human precancerous and malignant cervical cultures. Previous studies have shown a direct interplay of the stem cell niche, which is present in practically every tissue with the extracellular matrix. In the present study, we sought to determine the expression of stemness markers in cytological specimens collected from the ectocervix among women with cervical insufficiency during the second trimester of pregnancy and women with normal cervical length. A prospective cohort of 59 women was enrolled of whom 41 were diagnosed with cervical insufficiency. The expression of OCT-4 and NANOG was higher in the cervical insufficiency group compared to the control group (-5.03 (-6.27, -3.72) vs. -5.81 (-7.67, -5.02) p = 0.040 for OCT4) and (-7.47 (-8.78, -6.27) vs. -8.5 (-10.75, -7.14), p = 0.035 for NANOG. Differences in the DAZL gene were not significantly different (5.94 (4.82, 7.14) vs. 6.98 (5.87, 7.43) p = 0.097). Pearson correlation analysis indicated the existence of a moderate correlation of OCT-4 and Nanog with cervical length. Considering this information, the enhanced activity of stemness biomarkers among pregnant women diagnosed with cervical insufficiency may be predisposed to cervical insufficiency, and its predictive accuracy remains to be noted in larger population sizes.
Collapse
Affiliation(s)
- Savvia Pittokopitou
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Despina Mavrogianni
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kalliopi I Pappa
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Antsaklis
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Michail Sindos
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrial University of Athens, 11528 Athens, Greece
| | - Aikaterini Domali
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Sofoklis Stavros
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Peter Drakakis
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|