1
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Jiang X. Long noncoding RNA MEG3: an active player in fibrosis. Pharmacol Rep 2024:10.1007/s43440-024-00661-x. [PMID: 39373865 DOI: 10.1007/s43440-024-00661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Fibrosis, characterized by excess accumulation of extracellular matrix components, disrupts normal tissue structure and causes organ dysfunction. Long noncoding RNAs (lncRNAs) are a subset of RNAs longer than 200 nucleotides that are not converted into proteins. The increasing research indicated that lncRNA maternally expressed gene 3 (MEG3) was dysregulated in the pathologic process of fibrosis in several tissues. LncRNA MEG3 was revealed to regulate the expression of target proteins or serve as a miRNAs sponge to control the development of fibrosis, which was involved in NF-ҡB, PI3K/AKT, JAK2/STAT3, Wnt/β-catenin, ERK/p38, and Hh pathway. Importantly, the interference of MEG3 level ameliorated fibrosis. The present review summarized available studies of lncRNA MEG3 in fibrosis, which is helpful for a deeper understanding of the roles of MEG3 in fibrosis.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Zhang C, Qin Y, Tang Y, Gu M, Li Z, Xu H. MEG3 in hematologic malignancies: from the role of disease biomarker to therapeutic target. Pharmacogenet Genomics 2024; 34:209-216. [PMID: 38743429 DOI: 10.1097/fpc.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Cai Y, Li L, Shao C, Chen Y, Wang Z. Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics. J Cardiovasc Transl Res 2024; 17:816-827. [PMID: 38294628 DOI: 10.1007/s12265-024-10485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the in-depth investigation of various diseases, angiogenesis has gained increasing attention. Among the contributing factors to angiogenesis research, endothelial epigenetics has emerged as an influential player. Endothelial epigenetic therapy exerts its regulatory effects on endothelial cells by controlling gene expression, RNA, and histone modification within these cells, which subsequently promotes or inhibits angiogenesis. As a result, this therapeutic approach offers potential strategies for disease treatment. The purpose of this review is to outline the pertinent mechanisms of endothelial cell epigenetics, encompassing glycolysis, lactation, amino acid metabolism, non-coding RNA, DNA methylation, histone modification, and their connections to specific diseases and clinical applications. We firmly believe that endothelial cell epigenetics has the potential to become an integral component of precision medicine therapy, unveiling novel therapeutic targets and providing new directions and opportunities for disease treatment.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Yiliu Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Jingkou District, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
6
|
Gan L, Zheng L, Zou J, Luo P, Chen T, Zou J, Li W, Chen Q, Cheng L, Zhang F, Qian B. Critical roles of lncRNA-mediated autophagy in urologic malignancies. Front Pharmacol 2024; 15:1405199. [PMID: 38939836 PMCID: PMC11208713 DOI: 10.3389/fphar.2024.1405199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.
Collapse
Affiliation(s)
- Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Sun SY, Lee DH, Liu HC, Yang Y, Han YH, Kwon T. Identifying competing endogenous RNA regulatory networks and hub genes in alcoholic liver disease for early diagnosis and potential therapeutic target insights. Aging (Albany NY) 2024; 16:9147-9167. [PMID: 38795390 PMCID: PMC11164510 DOI: 10.18632/aging.205861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/22/2024] [Indexed: 05/27/2024]
Abstract
Alcoholic liver disease (ALD) has a complex pathogenesis. Although early-stage ALD can be reversed by ceasing alcohol consumption, early symptoms are difficult to detect, and several factors contribute to making alcohol difficult to quit. Continued alcohol abuse worsens the condition, meaning it may gradually progress into alcoholic hepatitis and cirrhosis, ultimately, resulting in irreversible consequences. Therefore, effective treatments are urgently needed for early-stage ALD. Current research mainly focuses on preventing the progression of alcoholic fatty liver to alcoholic hepatitis and cirrhosis. However, challenges remain in identifying key therapeutic targets and understanding the molecular mechanisms that underlie the treatment of alcoholic hepatitis and cirrhosis, such as the limited discovery of effective therapeutic targets and treatments. Here, we downloaded ALD microarray data from Gene Expression Omnibus and used bioinformatics to compare and identify the hub genes involved in the progression of alcoholic fatty liver to alcoholic hepatitis and cirrhosis. We also predicted target miRNAs and long non-coding RNAs (lncRNAs) to elucidate the regulatory mechanisms (the mRNA-miRNA-lncRNA axis) underlying this progression, thereby building a competitive endogenous RNA (ceRNA) mechanism for lncRNA, miRNA, and mRNA. This study provides a theoretical basis for the early treatment of alcoholic hepatitis and cirrhosis and identifies potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai-Yang Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hao-Cheng Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yi Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk 56216, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Senousy MA, Shaker OG, Ayeldeen G, Radwan AF. Association of lncRNA MEG3 rs941576 polymorphism, expression profile, and its related targets with the risk of obesity-related colorectal cancer: potential clinical insights. Sci Rep 2024; 14:10271. [PMID: 38704452 PMCID: PMC11069513 DOI: 10.1038/s41598-024-60265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024] Open
Abstract
The identification of novel screening tools is imperative to empower the early detection of colorectal cancer (CRC). The influence of the long non-coding RNA maternally expressed gene 3 (MEG3) rs941576 single nucleotide polymorphism on CRC susceptibility remains uninvestigated. This research appraised MEG3 rs941576 association with the risk and clinical features of CRC and obesity-related CRC and its impact on serum MEG3 expression and its targets miR-27a/insulin-like growth factor 1 (IGF1)/IGF binding protein 3 (IGFBP3) and miR-181a/sirtuin 1 (SIRT1), along with the potential of these markers in obesity-related CRC diagnosis. 130 CRC patients (60 non-obese and 70 obese) and 120 cancer-free controls (64 non-obese and 56 obese) were enrolled. MEG3 targets were selected using bioinformatics analysis. MEG3 rs941576 was associated with magnified CRC risk in overall (OR (95% CI) 4.69(1.51-14.57), P = 0.0018) and stratified age and gender groups, but not with obesity-related CRC risk or MEG3/downstream targets' expression. Escalated miR-27a and IGFBP3 and reduced IGF1 serum levels were concomitant with MEG3 downregulation in overall CRC patients versus controls and obese versus non-obese CRC patients. Serum miR-181a and SIRT1 were upregulated in CRC patients versus controls but weren't altered in the obese versus non-obese comparison. Serum miR-181a and miR-27a were superior in overall and obesity-related CRC diagnosis, respectively; meanwhile, IGF1 was superior in distinguishing obese from non-obese CRC patients. Only serum miR-27a was associated with obesity-related CRC risk in multivariate logistic analysis. Among overall CRC patients, MEG3 rs941576 was associated with lymph node (LN) metastasis and tumor stage, serum MEG3 was negatively correlated with tumor stage, while SIRT1 was correlated with the anatomical site. Significant correlations were recorded between MEG3 and anatomical site, SIRT1 and tumor stage, and miR-27a/IGFBP3 and LN metastasis among obese CRC patients, while IGF1 was correlated with tumor stage and LN metastasis among non-obese CRC patients. Conclusively, this study advocates MEG3 rs941576 as a novel genetic marker of CRC susceptibility and prognosis. Our findings accentuate circulating MEG3/miR-27a/IGF1/IGFBP3, especially miR-27a as valuable markers for the early detection of obesity-related CRC. This axis along with SIRT1 could benefit obesity-related CRC prognosis.
Collapse
Affiliation(s)
- Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| |
Collapse
|
9
|
Al-Hawary SIS, Saleh RO, Taher SG, Ahmed SM, Hjazi A, Yumashev A, Ghildiyal P, Qasim MT, Alawadi A, Ihsan A. Tumor-derived lncRNAs: Behind-the-scenes mediators that modulate the immune system and play a role in cancer pathogenesis. Pathol Res Pract 2024; 254:155123. [PMID: 38277740 DOI: 10.1016/j.prp.2024.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Having been involved in complex cellular regulatory networks and cell-to-cell communications, non-coding RNAs (lncRNAs) have become functional carriers that transmit information between cells and tissues, modulate tumor microenvironments, encourage angiogenesis and invasion, and make tumor cells more resistant to drugs. Immune cells' exosomal lncRNAs may be introduced into tumor cells to influence the tumor's course and the treatment's effectiveness. Research has focused on determining if non-coding RNAs affect many target genes to mediate regulating recipient cells. The tumor microenvironment's immune and cancer cells are influenced by lncRNAs, which may impact a treatment's efficacy. The lncRNA-mediated interaction between cancer cells and immune cells invading the tumor microenvironment has been the subject of numerous recent studies. On the other hand, tumor-derived lncRNAs' control over the immune system has not gotten much attention and is still a relatively new area of study. Tumor-derived lncRNAs are recognized to contribute to tumor immunity, while the exact mechanism is unclear.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Ahmed Alawadi
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq; College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
| | - Ali Ihsan
- College of Technical Engineering, the Islamic University of Babylon, Iraq; Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Medical Laboratory Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
10
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Slanař O. Long non-coding RNAs PTENP1, GNG12-AS1, MAGI2-AS3 and MEG3 as tumor suppressors in breast cancer and their associations with clinicopathological parameters. Cancer Biomark 2024; 40:61-78. [PMID: 38277283 PMCID: PMC11191509 DOI: 10.3233/cbm-230259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Breast cancer is the most commonly occurring cancer worldwide and is the main cause of death from cancer in women. Novel biomarkers are highly warranted for this disease. OBJECTIVE Evaluation of novel long non-coding RNAs biomarkers for breast cancer. METHODS The study comprised the analysis of the expression of 71 candidate lncRNAs via screening, six of which (four underexpressed, two overexpressed) were validated and analyzed by qPCR in tumor tissues associated with NST breast carcinomas, compared with the benign samples and with respect to their clinicopathological characteristics. RESULTS The results indicated the tumor suppressor roles of PTENP1, GNG12-AS1, MEG3 and MAGI2-AS3. Low levels of both PTENP1 and GNG12-AS1 were associated with worsened progression-free and overall survival rates. The reduced expression of GNG12-AS1 was linked to the advanced stage. A higher grade was associated with the lower expression of PTENP1, GNG12-AS1 and MAGI2-AS3. Reduced levels of both MEG3 and PTENP1 were linked to Ki-67 positivity. The NRSN2-AS1 and UCA1 lncRNAs were overexpressed; higher levels of UCA1 were associated with multifocality. CONCLUSIONS The results suggest that the investigated lncRNAs may play important roles in breast cancer and comprise a potential factor that should be further evaluated in clinical studies.
Collapse
Affiliation(s)
- Luděk Záveský
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
- General University Hospital, Prague, Czech Republic
- First Faculty of Medicine, Institute of Pharmacology, Charles University, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- University Hospital Brno, Brno, Czech Republic
- Department of Obstetrics and Gynecology, Masaryk University, Brno, Czech Republic
| | - Luboš Minář
- University Hospital Brno, Brno, Czech Republic
- Department of Obstetrics and Gynecology, Masaryk University, Brno, Czech Republic
| | - Milada Kohoutová
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czech Republic
- General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- General University Hospital, Prague, Czech Republic
- First Faculty of Medicine, Institute of Pharmacology, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Hussain MS, Majami AA, Ali H, Gupta G, Almalki WH, Alzarea SI, Kazmi I, Syed RU, Khalifa NE, Bin Break MK, Khan R, Altwaijry N, Sharma R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol Res Pract 2023; 251:154850. [PMID: 37839358 DOI: 10.1016/j.prp.2023.154850] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
MEG3, a significant long non-coding RNA (lncRNA), substantially functions in diverse biological processes, particularly breast cancer (BC) development. Within the imprinting DLK-MEG3 region on human chromosomal region 14q32.3, MEG3 spans 35 kb and encompasses ten exons. It exerts regulatory effects through intricate interactions with miRNAs, proteins, and epigenetic modifications. MEG3's multifaceted function in BC is evident in gene expression modulation, osteogenic tissue differentiation, and involvement in bone-related conditions. Its role as a tumor suppressor is highlighted by its influence on miR-182 and miRNA-29 expression in BC. Additionally, MEG3 is implicated in acute myocardial infarction and endothelial cell function, emphasising cell-specific regulatory mechanisms. MEG3's impact on gene activity encompasses transcriptional and post-translational adjustments, including DNA methylation, histone modifications, and interactions with transcription factors. MEG3 dysregulation is linked to unfavourable outcomes and drug resistance. Notably, higher MEG3 expression is associated with enhanced survival in BC patients. Overcoming challenges such as unravelling context-specific interactions, understanding epigenetic control, and translating findings into clinical applications is imperative. Prospective endeavours involve elucidating underlying mechanisms, exploring epigenetic alterations, and advancing MEG3-based diagnostic and therapeutic approaches. A comprehensive investigation into broader signaling networks and rigorous clinical trials are pivotal. Rigorous validation through functional and molecular analyses will shed light on MEG3's intricate contribution to BC progression.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haider Ali
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, 11115, Sudan
| | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint, Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rahul Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, Rajasthan, India
| |
Collapse
|
12
|
Calanca N, Francisco ALN, Bizinelli D, Kuasne H, Barros Filho MC, Flores BCT, Pinto CAL, Rainho CA, Soares MBP, Marchi FA, Kowalski LP, Rogatto SR. DNA methylation-based depiction of the immune microenvironment and immune-associated long non-coding RNAs in oral cavity squamous cell carcinomas. Biomed Pharmacother 2023; 167:115559. [PMID: 37742611 DOI: 10.1016/j.biopha.2023.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Oral cavity squamous cell carcinoma (OSCC) is a complex and dynamic disease characterized by clinicopathological and molecular heterogeneity. Spatial and temporal heterogeneity of cell subpopulations has been associated with cancer progression and implicated in the prognosis and therapy response. Emerging evidence indicates that aberrant epigenetic profiles in OSCC may foster an immunosuppressive tumor microenvironment by modulating the expression of immune-related long non-coding RNAs (lncRNAs). DNA methylation analysis was performed in 46 matched OSCC and normal adjacent tissue samples using a genome-wide platform (Infinium HumanMethylation450 BeadChip). Reference-based computational deconvolution (MethylCIBERSORT) was applied to infer the immune cell composition of the bulk samples. The expression levels of genes encoding immune markers and differentially methylated lncRNAs were investigated using The Cancer Genome Atlas dataset. OSCC specimens presented distinct immune cell composition, including the enrichment of monocyte lineage cells, natural killer cells, cytotoxic T-lymphocytes, regulatory T-lymphocytes, and neutrophils. In contrast, B-lymphocytes, effector T-lymphocytes, and fibroblasts were diminished in tumor samples. The hypomethylation of three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) at individual CpG sites was confirmed by bisulfite-pyrosequencing. Also, the upregulation of a set of immune markers (FOXP3, GZMB, IL10, IL2RA, TGFB, IFNG, TDO2, IDO1, and HIF1A) was detected. The immune cell composition, immune markers alteration, and dysregulation of immune-associated lncRNAs reinforce the impact of the immune microenvironment in OSCC. These concurrent factors contribute to tumor heterogeneity, suggesting that epi-immunotherapy could be an efficient alternative to treat OSCC.
Collapse
Affiliation(s)
- Naiade Calanca
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark; Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Ana Lucia Noronha Francisco
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Daniela Bizinelli
- International Research Center (CIPE), A.C.Camargo Cancer Center, São Paulo 01508-010, SP, Brazil
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal H3A1A3, QC, Canada
| | | | - Bianca Campos Troncarelli Flores
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark
| | | | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Milena Botelho Pereira Soares
- Health Technology Institute, SENAI CIMATEC, Salvador 41650-010, BA, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil
| | - Fabio Albuquerque Marchi
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil; Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark.
| |
Collapse
|
13
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
14
|
Li J, Liu W, Peng F, Cao X, Xie X, Peng C. The multifaceted biology of lncR-Meg3 in cardio-cerebrovascular diseases. Front Genet 2023; 14:1132884. [PMID: 36968595 PMCID: PMC10036404 DOI: 10.3389/fgene.2023.1132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Cardio-cerebrovascular disease, related to high mortality and morbidity worldwide, is a type of cardiovascular or cerebrovascular dysfunction involved in various processes. Therefore, it is imperative to conduct additional research into the pathogenesis and new therapeutic targets of cardiovascular and cerebrovascular disorders. Long non-coding RNAs (lncRNAs) have multiple functions and are involved in nearly all cellular biological processes, including translation, transcription, signal transduction, and cell cycle control. LncR-Meg3 is one of them and is becoming increasingly popular. By binding proteins or directly or competitively binding miRNAs, LncR-Meg3 is involved in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, epithelial-mesenchymal transition, and other processes. Recent research has shown that LncR-Meg3 is associated with acute myocardial infarction and can be used to diagnose this condition. This article examines the current state of knowledge regarding the expression and regulatory function of LncR-Meg3 in relation to cardiovascular and cerebrovascular diseases. The abnormal expression of LncR-Meg3 can influence neuronal cell death, inflammation, apoptosis, smooth muscle cell proliferation, etc., thereby aggravating or promoting the disease. In addition, we review the bioactive components that target lncR-Meg3 and propose some potential delivery vectors. A comprehensive and in-depth analysis of LncR-Meg3’s role in cardiovascular disease suggests that targeting LncR-Meg3 may be an alternative therapy in the near future, providing new options for slowing the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenxiu Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of standardization of Chinese herbal medicine of MOE, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|