1
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Poddubskaya E, Suntsova M, Lyadova M, Luppov D, Guryanova A, Lyadov V, Garazha A, Sorokin M, Semenova A, Shatalov V, Biakhova M, Simonov A, Moisseev A, Buzdin A. Biomarkers of success of anti-PD-(L)1 immunotherapy for non-small cell lung cancer derived from RNA- and whole-exome sequencing: results of a prospective observational study on a cohort of 85 patients. Front Immunol 2024; 15:1493877. [PMID: 39723204 PMCID: PMC11669362 DOI: 10.3389/fimmu.2024.1493877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) treatment have shown high efficacy for about 15 cancer types. However, this therapy is only effective in 20-30% of cancer patients. Thus, the precise biomarkers of ICI response are an urgent need. Methods We conducted a prospective observational study of the prognostic potential ofseveral existing and putative biomarkers of response to immunotherapy in acohort of 85 patients with lung cancer (LC) receiving PD-1 or PD-L1 targeted ICIs. Tumor biosamples were obtained prior to ICI treatment and profiled by whole exome and RNA sequencing. The entire 403 putative biomarkers were screened, including tumor mutation burden (TMB) and number of cancer neoantigens, 131 specific HLA alleles, homozygous state of 11 HLA alleles and their superfamilies; four gene mutation biomarkers, expression of 45 immune checkpoint genes and closely related genes, and three previously published diagnostic gene signatures; for the first time, activation levels of 188 molecular pathways containing immune checkpoint genes and activation levels of 19 pathways algorithmically generated using a human interactome model centered around immune checkpoint genes. Treatment outcomes and/or progression-free survival (PFS) times were available for 61 of 85 patients with LC, including 24 patients with adenocarcinoma and 27 patients with squamous cell LC, whose samples were further analyzed. For the rest 24 patients, both treatment outcomes and PFS data could not be collected. Of these, 54 patients were treated with PD1-specific and 7 patients with PD-L1-specific ICIs. We evaluated the potential of biomarkers based on PFS and RECIST treatment response data. Results In our sample, 45 biomarkers were statistically significantly associated with PFS and 44 with response to treatment, of which eight were shared. Five of these (CD3G and NCAM1 gene expression levels, and levels of activation of Adrenergic signaling in cardiomyocytes, Growth hormone signaling, and Endothelin molecular pathways) were used in our signature that showed an AUC of 0.73 and HR of 0.27 (p=0.00034) on the experimental dataset. This signature was also reliable (AUC 0.76, 0.87) for the independent publicly available LC datasets GSE207422, GSE126044 annotated with ICI response data and demonstrated same survival trends on independent dataset GSE135222 annotated with PFS data. In both experimental and one independent datasets annotated with samples' histotypes, the signature worked better for lung adenocarcinoma than for squamous cell LC. Conclusion The high reliability of our signature to predict response and PFS after ICI treatment was demonstrated using experimental and 3 independent datasets. Additionally, annotated molecular profiles obtained in this study were made publicly accessible.
Collapse
Affiliation(s)
- Elena Poddubskaya
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Vitamed Clinic, Moscow, Russia
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Translational Genomic Bioinformatic, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Marina Lyadova
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, Moscow, Russia
| | - Daniil Luppov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Translational Genomic Bioinformatic, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Molecular Genetic Research, Endocrinology Research Center, Moscow, Russia
| | - Anastasia Guryanova
- Laboratory of Translational Genomic Bioinformatic, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vladimir Lyadov
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, Moscow, Russia
- Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education «Russian Medical Academy of Continuous Professional Education» of the Ministry of Healthcare of the Russian Federation, Novokuznetsk, Russia, Novokuznetsk, Russia
| | | | - Maksim Sorokin
- Department of Molecular Genetic Research, Endocrinology Research Center, Moscow, Russia
- Department of Research, Oncobox Ltd., Moscow, Russia
- Laboratory for Genomic Analysis of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Anna Semenova
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, Moscow, Russia
| | - Vitaly Shatalov
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, Moscow, Russia
| | - Maria Biakhova
- Oncology Center No. 1, Moscow City Hospital Named after S. S. Yudin, Moscow Healthcare Department, Moscow, Russia
| | - Alexander Simonov
- Laboratory of Translational Genomic Bioinformatic, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksey Moisseev
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Molecular Genetic Research, Endocrinology Research Center, Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Translational Genomic Bioinformatic, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory for Genomic Analysis of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
3
|
Sesma A, Pardo J, Isla D, M. Gálvez E, Gascón-Ruiz M, Martínez-Lostao L, Moratiel A, Paño-Pardo JR, Quílez E, Torres-Ramón I, Yubero A, Zapata-García M, Domingo MP, Esteban P, Sanz Pamplona R, Lastra R, Ramírez-Labrada A. Peripheral Blood TCRβ Repertoire, IL15, IL2 and Soluble Ligands for NKG2D Activating Receptor Predict Efficacy of Immune Checkpoint Inhibitors in Lung Cancer. Cancers (Basel) 2024; 16:2798. [PMID: 39199571 PMCID: PMC11352724 DOI: 10.3390/cancers16162798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has changed the therapeutic paradigm of lung cancer (LC), becoming the standard of treatment for previously untreated advanced non-small cell lung cancer (NSCLC) without actionable mutations. It has allowed the achievement of durable responses and resulted in significant survival benefits. However, not all patients respond; hence, molecular biomarkers are needed to help us predict which patients will respond. With this objective, a prospective observational study was designed, including a cohort of 55 patients with NSCLC who received ICIs. We studied whether biomarkers such as TCRβ and specific cytokines involved in the regulation of T cell activity were related to the immunotherapy response. In the survival analysis, it was found that patients with higher TCRβ clonality, lower TCRβ evenness, higher TCRβ Shannon diversity and lower TCRβ convergence had higher overall survival (OS) and progression-free survival (PFS). However, no statistically significant association was observed. Regarding cytokines, those patients with higher levels of IL-2 and IL-15 presented statistically significantly shorter OS and PFS, respectively. In fact, in the multivariable analysis, the high IL-15 level increased the risk of death by three times. Although the sample size was small and more studies are needed to confirm our results, our study reveals promising markers of responses to ICIs.
Collapse
Affiliation(s)
- Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Julian Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Microbiology, Radiology, Pediatry and Public Health Department Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain
| | - Marta Gascón-Ruiz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Alba Moratiel
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - J. Ramón Paño-Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Zapata-García
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Pilar Domingo
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Patricia Esteban
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rebeca Sanz Pamplona
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Ariel Ramírez-Labrada
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
| |
Collapse
|
4
|
Goswami M, Toney NJ, Pitts SC, Celades C, Schlom J, Donahue RN. Peripheral immune biomarkers for immune checkpoint inhibition of solid tumours. Clin Transl Med 2024; 14:e1814. [PMID: 39162097 PMCID: PMC11333946 DOI: 10.1002/ctm2.1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND With the rapid adoption of immunotherapy for the treatment of cancer comes the pressing need for readily accessible biomarkers to guide immunotherapeutic strategies and offer insights into outcomes with specific treatments. Regular sampling of solid tumour tissues outside of melanoma for immune monitoring is not often feasible; conversely, routine, frequent interrogation of circulating immune biomarkers is entirely possible. As immunotherapies and immune checkpoint inhibitors, in particular, are more widely used in first-line, neoadjuvant, and metastatic settings, the discovery and validation of peripheral immune biomarkers are urgently needed across solid tumour types for improved prediction and prognostication of clinical outcomes in response to immunotherapy, as well as elucidation of mechanistic underpinnings of the intervention. Careful experimental design, encompassing both retrospective and prospective studies, is required in such biomarker identification studies, and concerted efforts are essential for their advancement into clinical settings. CONCLUSION In this review, we summarize shared immune features between the tumour microenvironment and systemic circulation, evaluate exploratory peripheral immune biomarker studies, and discuss associations between candidate biomarkers with clinical outcomes. We also consider integration of multiple peripheral immune parameters for better prediction and prognostication and discuss considerations in study design to further evaluate the clinical utility of candidate peripheral immune biomarkers for immunotherapy of solid tumours. HIGHLIGHTS Peripheral immune biomarkers are critical for improved prediction and prognostication of clinical outcomes for patients with solid tumours treated with immune checkpoint inhibition. Candidate peripheral biomarkers, such as cytokines, soluble factors, and immune cells, have potential as biomarkers to guide immunotherapy of solid tumours. Multiple peripheral immune parameters may be integrated to improve prediction and prognostication. The potential of peripheral immune biomarkers to guide immunotherapy of solid tumours requires critical work in biomarker discovery, validation, and standardization.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Nicole J. Toney
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephanie C. Pitts
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Carolina Celades
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jeffrey Schlom
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee N. Donahue
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
5
|
He Y, Yang D, Lin X, Zhang J, Cheng R, Cao L, Yang L, Zhang M, Shi X, Jin X, Sun H, Sun H, Zang J, Li Y, Ma J, Nie H. Neoadjuvant immunochemotherapy improves clinical outcomes of patients with esophageal cancer by mediating anti-tumor immunity of CD8+ T (Tc1) and CD16+ NK cells. Front Immunol 2024; 15:1412693. [PMID: 39076970 PMCID: PMC11284045 DOI: 10.3389/fimmu.2024.1412693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Background Esophageal cancer (ESCA) is one of the most common tumors in the world, and treatment using neoadjuvant therapy (NT) based on radiotherapy and/or chemotherapy has still unsatisfactory results. Neoadjuvant immunochemotherapy (NICT) has also become an effective treatment strategy nowadays. However, its impact on the tumor microenvironment (TME) and regulatory mechanisms on T cells and NK cells needs to be further elucidated. Methods A total of 279 cases of ESCA who underwent surgery alone [non-neoadjuvant therapy (NONE)], neoadjuvant chemotherapy (NCT), and NICT were collected, and their therapeutic effect and survival period were compared. Further, RNA sequencing combined with biological information was used to analyze the expression of immune-related genes. Immunohistochemistry, immunofluorescence, and quantitative real-time PCR (qRT-PCR) were used to verify the activation and infiltration status of CD8+ T and CD16+ NK cells, as well as the function and regulatory pathway of killing tumor cells. Results Patients with ESCA in the NICT group showed better clinical response, median survival, and 2-year survival rates (p < 0.05) compared with the NCT group. Our RNA sequencing data revealed that NICT could promote the expression of immune-related genes. The infiltration and activation of immune cells centered with CD8+ T cells were significantly enhanced. CD8+ T cells activated by PD-1 inhibitors secreted more IFN-γ and cytotoxic effector factor cells through the transcription factor of EOMES and TBX21. At the same time, activated CD8+ T cells mediated the CD16+ NK cell activation and secreted more IFN-γ to kill ESCA cells. In addition, the immunofluorescence co-staining results showed that more CD276+ tumor cells and CD16+ NK cells were existed in pre-NCT and pre-NICT group. However, CD276+ tumor cells were reduced significantly in the post-NICT group, while they still appeared in the post-NCT group, which means that CD16+ NK cells can recognize and kill CD276+ tumor cells after immune checkpoint blocker (ICB) treatment. Conclusion NICT can improve the therapeutic effect and survival period of resectable ESCA patients. NICT could promote the expression of immune-related genes and activate CD8+ T and CD16+ NK cells to secrete more IFN-γ to kill ESCA cells. It provides a theoretical basis and clinical evidence for its potential as an NT strategy in ESCA.
Collapse
Affiliation(s)
- Yunlong He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jinfeng Zhang
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Rui Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resource and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Liangyu Cao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Mengmeng Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xinyue Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Handi Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Haoxiu Sun
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingyu Zang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
7
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
8
|
Carbone ML, Capone A, Guercio M, Reddel S, Silvestris DA, Lulli D, Ramondino C, Peluso D, Quintarelli C, Volpe E, Failla CM. Insight into immune profile associated with vitiligo onset and anti-tumoral response in melanoma patients receiving anti-PD-1 immunotherapy. Front Immunol 2023; 14:1197630. [PMID: 37680638 PMCID: PMC10482109 DOI: 10.3389/fimmu.2023.1197630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Immunotherapy with checkpoint inhibitors is an efficient treatment for metastatic melanoma. Development of vitiligo upon immunotherapy represents a specific immune-related adverse event (irAE) diagnosed in 15% of patients and associated with a positive clinical response. Therefore, a detailed characterization of immune cells during vitiligo onset in melanoma patients would give insight into the immune mechanisms mediating both the irAE and the anti-tumor response. Methods To better understand these aspects, we analyzed T cell subsets from peripheral blood of metastatic melanoma patients undergoing treatment with anti-programmed cell death protein (PD)-1 antibodies. To deeply characterize the antitumoral T cell response concomitant to vitiligo onset, we analyzed T cell content in skin biopsies collected from melanoma patients who developed vitiligo. Moreover, to further characterize T cells in vitiligo skin lesion of melanoma patients, we sequenced T cell receptor (TCR) of cells derived from biopsies of vitiligo and primary melanoma of the same patient. Results and discussion Stratification of patients for developing or not developing vitiligo during anti-PD-1 therapy revealed an association between blood reduction of CD8-mucosal associated invariant T (MAIT), T helper (h) 17, natural killer (NK) CD56bright, and T regulatory (T-reg) cells and vitiligo onset. Consistently with the observed blood reduction of Th17 cells in melanoma patients developing vitiligo during immunotherapy, we found high amount of IL-17A expressing cells in the vitiligo skin biopsy, suggesting a possible migration of Th17 cells from the blood into the autoimmune lesion. Interestingly, except for a few cases, we found different TCR sequences between vitiligo and primary melanoma lesions. In contrast, shared TCR sequences were identified between vitiligo and metastatic tissues of the same patient. These data indicate that T cell response against normal melanocytes, which is involved in vitiligo onset, is not typically mediated by reactivation of specific T cell clones infiltrating primary melanoma but may be elicited by T cell clones targeting metastatic tissues. Altogether, our data indicate that anti-PD-1 therapy induces a de novo immune response, stimulated by the presence of metastatic cells, and composed of different T cell subtypes, which may trigger the development of vitiligo and the response against metastatic tumor.
Collapse
Affiliation(s)
- Maria Luigia Carbone
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Alessia Capone
- Laboratory of Molecular Neuroimmunology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Oncology-Hematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Department of Oncology-Hematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Daniela Lulli
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Carmela Ramondino
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| | - Daniele Peluso
- Department of Biology, University “Tor Vergata”, Rome, Italy
| | - Concetta Quintarelli
- Department of Oncology-Hematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Elisabetta Volpe
- Laboratory of Molecular Neuroimmunology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Cristina Maria Failla
- Laboratory of Experimental Immunology, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
9
|
Zhou J, Chu X, Zhao J, Xie M, Wu J, Yu X, Fang Y, Li Y, Li X, Su C. Full spectrum flow cytometry-powered comprehensive analysis of PBMC as biomarkers for immunotherapy in NSCLC with EGFR-TKI resistance. Biol Proced Online 2023; 25:21. [PMID: 37488517 PMCID: PMC10364374 DOI: 10.1186/s12575-023-00215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Clinical studies suggest that immune checkpoint inhibitor (ICI) monotherapy has limited benefits in non-small cell lung cancer (NSCLC) patients after epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) failure. However, data about efficacy of ICI plus chemotherapy remain controversial, probably attributed to the heterogeneity among such population, and robust efficacy biomarkers are urgent to explore. METHODS A total of 60 eligible patients who received ICI plus chemotherapy after EGFR-TKI treatment failure were enrolled, 24 of whom peripheral blood mononuclear cell (PBMC) samples were collected at baseline and after 2 cycles of treatment. We have designed a 23-color-antibody panel to detect PBMC by full spectrum flow cytometry. RESULTS For EGFR-TKI resistant NSCLC patients: 1) ICI plus chemotherapy achieved an objective response rate (ORR) of 21.7% and a median progression-free survival (PFS) of 6.4 months. 2) clinical characteristics associated with worse efficacy included liver metastasis and platelet-to-lymphocyte ratio (PLR) > 200. 3) the proportion of immune cell subset associated with better efficacy was higher baseline effective CD4+T cells (E4). 4) the baseline expression of immune checkpoint proteins (ICPs) on cell subsets associated with better efficacy included: higher expression of CD25 on dendritic cells (DC) and central memory CD8+T cells (CM8), and higher expression of Lymphocyte activation gene 3 (LAG-3) on effective memory CD8+T cells (EM8). 5) the expression of ICPs after 2 cycles of treatment associated with better efficacy included: higher expression of CD25 on CD8+T/EM8 /natural killer (NK) cells. 6) the dynamic changes of ICPs expression associated with worse efficacy included: significantly decrease of T cell immunoglobulin and ITIM domain (TIGIT) expression on regular T cells (Tregs) and decrease of V-domain immunoglobulin suppressor of T cell activation (VISTA) expression on Th1. 7) a prediction model for the efficacy of ICI plus chemotherapy was successfully constructed with a sensitivity of 62.5%, specificity of 100%, and area under curve (AUC) = 0.817. CONCLUSIONS Some EGFR-TKI-resistant NSCLC patients could indeed benefit from ICI plus chemotherapy, but most patients are primary resistant to immunotherapy. Comprehensive analysis of peripheral immune cells using full spectrum flow cytometry showed that compared to the proportion of cell subsets, the expression type and level of ICPs on immune cells, especially CD25, were significantly correlated with the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Xiangling Chu
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Jing Zhao
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Mengqing Xie
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Jing Wu
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Xin Yu
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Yujia Fang
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China
| | - Yazhou Li
- Righton Biotechnology Co., Ltd, Shanghai, China
| | - Xiyan Li
- Righton Biotechnology Co., Ltd, Shanghai, China
| | - Chunxia Su
- Department of Oncology, Department of Clinical Research Center, Shanghai Pulmonary Hospital &, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, 200043, China.
| |
Collapse
|
10
|
Tenuta M, Pandozzi C, Sciarra F, Campolo F, Gelibter AJ, Sirgiovanni G, Cortesi E, Lenzi A, Isidori AM, Sbardella E, Venneri MA. Circulating Natural Killer Cells as Prognostic Value for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Correlation with Sarcopenia. Cancers (Basel) 2023; 15:3592. [PMID: 37509255 PMCID: PMC10377538 DOI: 10.3390/cancers15143592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of tumors. Natural killer (NK) cells can play an important role in cancer immune surveillance. The aim of this prospective observational study was to analyze peripheral blood mononuclear cells (PBMCs) in patients with advanced non-small-cell lung cancer (NSCLC) receiving ICIs in order to identify predictive factors for better survival outcomes. METHODS Forty-seven stage IV NSCLC patients were enrolled. Patients underwent baseline (T0) and longitudinal (T1) evaluations after ICIs. Peripheral immune blood cell counts were analyzed using flow cytometry. RESULTS Basal levels of CD3-CD56+ NK cells were higher in patients with controlled disease (DC) compared to progression disease (PD) patients (127 cells/µL vs. 27.8 cells/µL, p < 0.001). Lower NK cell values were independent prognostic factors for shorter overall survival (OS) (HR 0.992; 95% CI 0.987-0.997, p < 0.001) and progression-free survival (PFS) (HR 0.988; 95% CI 0.981-0.994, p < 0.001). During the longitudinal evaluation, CD3-CD56+ NK cells (138.1 cells/µL vs. 127 cells/µL, p = 0.025) and CD56bright NK cells (27.4 cells/µL vs. 18.1 cells/µL, p = 0.034) significantly increased in the DC group. Finally, lower values of CD3-CD56+ NK cells (28.3 cells/µL vs. 114.6 cells/µL, p = 0.004) and CD56dim NK cells (13.2 cells/µL vs. 89.4 cells/µL, p < 0.001) were found in sarcopenic patients compared to patients without sarcopenia. CONCLUSIONS Peripheral NK cells could represent a non-invasive and useful tool to predict ICI therapy response in NSCLC patients, and the association of low NK cell levels with sarcopenia deserves even more attention in clinical evaluation.
Collapse
Affiliation(s)
- Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alain J Gelibter
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Grazia Sirgiovanni
- Medical and Translational Oncology, Oncology Department, AO Santa Maria, 05100 Terni, Italy
| | - Enrico Cortesi
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|