1
|
Pei SN, Lee KT, Rau KM, Lin TY, Tsai TH, Hsu YC. Luteolin (LUT) Induces Apoptosis and Regulates Mitochondrial Membrane Potential to Inhibit Cell Growth in Human Cervical Epidermoid Carcinoma Cells (Ca Ski). Biomedicines 2024; 12:2330. [PMID: 39457642 PMCID: PMC11505502 DOI: 10.3390/biomedicines12102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Luteolin (LUT) is a natural flavonoid with known anti-inflammatory, antioxidant, and anti-cancer properties. Cervical cancer, particularly prevalent in certain regions, remains a significant health challenge due to its high recurrence and poor response to treatment. This study aimed to investigate the anti-tumor effects of LUT on human cervical epidermoid carcinoma cells (Ca Ski), focusing on cell growth inhibition, apoptosis induction, and regulation of mitochondrial membrane potential. Methods: Ca Ski cells were treated with varying concentrations of LUT (0, 25, 50, 100 µM) for different time periods (24, 48, 72 hours). Cell viability was measured using the MTT assay, apoptosis was assessed by flow cytometry with annexin V-FITC/PI staining, and changes in mitochondrial membrane potential were evaluated using JC-1 staining. Caspase-3 activation was examined by flow cytometry, and expression of apoptosis-related proteins (caspase-3, -8, -9, AIF) was analyzed via Western blotting. Results: LUT significantly inhibited the growth of Ca Ski cells in a dose- and time-dependent manner, with the most pronounced effects observed at 100 µM over 72 hours. Flow cytometry confirmed that LUT induced apoptosis without causing necrosis. Mitochondrial membrane potential was reduced after LUT treatment, coinciding with increased caspase-3 activation. Western blot analysis revealed the upregulation of pro-apoptotic proteins caspase-3, -8, -9, and AIF, indicating that LUT induces apoptosis through the intrinsic mitochondrial pathway. Conclusions: Luteolin effectively inhibits cervical cancer cell proliferation and induces apoptosis by disrupting mitochondrial membrane potential and activating caspases. These findings suggest that LUT holds potential as a therapeutic agent for cervical cancer, with further studies needed to explore its in vivo efficacy and broader clinical applications.
Collapse
Affiliation(s)
- Sung-Nan Pei
- Department of Hematology Oncology, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-N.P.); (K.-M.R.)
| | - Kuan-Ting Lee
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan; (K.-T.L.); (T.-Y.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Kun-Ming Rau
- Department of Hematology Oncology, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-N.P.); (K.-M.R.)
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Tsung-Ying Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan; (K.-T.L.); (T.-Y.L.)
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan; (K.-T.L.); (T.-Y.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
2
|
Yu L, Qiu Y, Tong X. Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates. Cancers (Basel) 2024; 16:3131. [PMID: 39335103 PMCID: PMC11430741 DOI: 10.3390/cancers16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Renal cancer is a common and serious malignant tumor of the urinary system. While surgery effectively treats early-stage renal cancer, advanced cases pose a significant challenge due to poor treatment outcomes and chemotherapy resistance. Therefore, there is an urgent need to develop alternative therapeutic strategies. Ferroptosis is a newly defined form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which plays a critical role in tumor progression and drug resistance. Recent studies have shown that ferroptosis is involved in the occurrence and development of renal cancer, and ferroptosis-related genes can induce cell apoptosis and can be used as potential biomarkers for early diagnosis of renal cancer and participate in drug resistance of renal cancer chemotherapy. With the continuous improvement of the mechanism of ferroptosis, drugs targeting ferroptosis for the treatment of renal cancer are emerging in an endless stream. Based on the theoretical basis of the occurrence of ferroptosis, this paper reviewed drug-induced ferroptosis in renal cancer cells from the aspects of herbal medicine, natural compounds, drug resistance mechanisms, and nanomaterials, and delves into the clinical application potential of ferroptosis-related drugs in the treatment of renal cancer.
Collapse
Affiliation(s)
- Lingyan Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuyueyang Qiu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| |
Collapse
|
3
|
Lee CY, Chen PN, Kao SH, Wu HH, Hsiao YH, Huang TY, Wang PH, Yang SF. Deoxyshikonin triggers apoptosis in cervical cancer cells through p38 MAPK-mediated caspase activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:4308-4317. [PMID: 38717057 DOI: 10.1002/tox.24323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 08/09/2024]
Abstract
Deoxyshikonin (DSK) is a biological component derived from Lithospermum erythrorhizon. Although DSK possesses potential anticancer activities, whether DSK exerts anticancer effects on cervical cancer cells is incompletely explored. This study was aimed to investigate the anticancer activity of DSK against cervical cancer cells and its molecular mechanisms. Cell viability was evaluated by MTT assay. Level of phosphorylation and protein was determined using Western blot. Involvement of signaling kinases was assessed by specific inhibitors. Our results revealed that DSK reduced viability of human cervical cell in a dose-dependent fashion. Meanwhile, DSK significantly elicited apoptosis of HeLa and SiHa cells. Apoptosis microarray was used to elucidate the involved pathways, and the results showed that DSK dose-dependently diminished cellular inhibitor of apoptosis protein 1 (cIAP1), cIAP2, and XIAP, and induced cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-8/9/3. Furthermore, we observed that DSK significantly triggered activation of ERK, JNK, and p38 MAPK (p38), and only inhibition of p38 diminished the DSK-mediated pro-caspases cleavage. Taken together, our results demonstrate that DSK has anti-cervical cancer effects via the apoptotic cascade elicited by downregulation of IAPs and p38-mediated caspase activation. This suggests that DSK could act as an adjuvant to facilitate cervical cancer management.
Collapse
Affiliation(s)
- Chung-Yuan Lee
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzu-Yu Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Chen YH, Wu JX, Yang SF, Wu YC, Hsiao YH. Molecular Mechanisms Underlying the Anticancer Properties of Pitavastatin against Cervical Cancer Cells. Int J Mol Sci 2024; 25:7915. [PMID: 39063157 PMCID: PMC11277542 DOI: 10.3390/ijms25147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Jyun-Xue Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yun-Chia Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Yi-Hsuan Hsiao
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
5
|
Lin X, Fang Y, Mi X, Fu J, Chen S, Wu M, Jin N. Asiatic acid inhibits cervical cancer cell proliferation and migration via PI3K/AKT/mTOR signaling pathway. Heliyon 2024; 10:e34047. [PMID: 39055791 PMCID: PMC11269897 DOI: 10.1016/j.heliyon.2024.e34047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Cervical cancer (CC) is a malignant tumor of the female reproductive system that typically occurs in cervical cells and has high incidence and mortality rates, strong metastatic ability, and poor prognosis. Asiatic acid (AA) exhibits anti-inflammatory, anti-depressant, and anti-tumor effects. However, the molecular targets and mechanisms underlying AA-mediated inhibition of CC metastasis remain unclear. AA affects the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) process of CC cell lines. MTT experiments verified that AA inhibited the proliferation ability of CC cells, and the effect of AA on the lateral and longitudinal migration ability of CC was evaluated through wound healing and Transwell assays. Western blotting was used to explore whether AA inhibits EMT process in HeLa and C33a cells. Currently, targeting the PI3K/AKT/mTOR pathway as a strategy for cancer treatment remains an evolving field. However, the molecular mechanism by which AA inhibits CC via the PI3K/AKT/mTOR pathway remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Xiuying Lin
- Medical College, Yanbian University, Yanji, China
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Yanqiu Fang
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Xuguang Mi
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - jianhua Fu
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Shiling Chen
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Mengxue Wu
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Ningyi Jin
- Medical College, Yanbian University, Yanji, China
| |
Collapse
|
6
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gajewska S, Kurant D, Kurant M, Sousak M. Can Asiatic Acid from Centella asiatica Be a Potential Remedy in Cancer Therapy?-A Review. Cancers (Basel) 2024; 16:1317. [PMID: 38610995 PMCID: PMC11011005 DOI: 10.3390/cancers16071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Centella asiatica has been recognized for centuries in Eastern medicine for its pharmacological properties. Due to the increasing prevalence of oncological diseases worldwide, natural substances that could qualify as anticancer therapeutics are becoming increasingly important subjects of research. This review aims to find an innovative use for asiatic acid (AA) in the treatment or support of cancer therapy. It has been demonstrated that AA takes part in inhibiting phosphorylation, inducing cell death, and reducing tumor growth and metastasis by influencing important signaling pathways, such as PI3K, Akt, mTOR, p70S6K, and STAT3, in cancer cells. It is also worth mentioning the high importance of asiatic acid in reducing the expression of markers such as N-cadherin, β-catenin, claudin-1, and vimentin. Some studies have indicated the potential of asiatic acid to induce autophagy in cancer cells through changes in the levels of specific proteins such as LC3 and p62. It can also act as an anti-tumor immunotherapeutic agent, thanks to its inductive effect on Smad7 in combination with naringenin (an Smad3 inhibitor). It seems that asiatic acid may be a potential anticancer drug or form of adjunctive therapy. Further studies should take into account safety and toxicity issues, as well as limitations related to the pharmacokinetics of AA and its low oral bioavailability.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Sandra Gajewska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Marcin Kurant
- Department of Urology, District Hospital, 10 Lesna Street, 89-600 Chojnice, Poland;
| | - Masaoud Sousak
- Department of General Surgery, Paluckie Health Center Sp. o.o., Szpitalna 30, 88-400 Żnin, Poland;
| |
Collapse
|
7
|
Zhang L, Liu ZN, Han XY, Liu X, Li Y. Asiatic acid inhibits rheumatoid arthritis fibroblast-like synoviocyte growth through the Nrf2/HO-1/NF-κB signaling pathway. Chem Biol Drug Des 2024; 103:e14454. [PMID: 38477392 DOI: 10.1111/cbdd.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
Asiatic acid (AA) is generally recognized in the treatment of various diseases and has significant advantages in the treatment of various inflammatory diseases. The treatment of rheumatoid arthritis (RA) with AA is a completely new entry point. RA is a complex autoimmune inflammatory disease, and despite the involvement of different immune and nonimmune cells in the pathogenesis of RA, fibroblast-like synoviocytes (FLS) play a crucial role in the progression of the disease. si-Nrf2 was transfected in RA-FLS and the cells were treated with AA. MTT assay and colony formation assay were used to detect the effect of AA on the viability and formation of clones of RA-FLS, respectively. Moreover, the apoptosis of RA-FLS was observed by Hoechst 33342 staining and flow cytometry. Western blot was applied to measure the expression of the Nrf2/HO-1/NF-κB signaling pathway-related proteins. Compared with the control group, RA-FLS proliferation, and clone formation were significantly inhibited by the increase of AA concentration, and further experiments showed that AA-induced apoptosis of RA-FLS. In addition, AA activated the Nrf2/HO-1 pathway to inhibit NF-κB protein expression. However, the knockdown of Nrf2 significantly offsets the effects of AA on the proliferation, apoptosis, and Nrf2/HO-1/NF-κB signaling pathway of RA-FLS cells. AA can treat RA by inhibiting the proliferation and inducing the apoptosis of RA-FLS. The mechanism may be related to the activation of the Nrf2/HO-1/NF-κB pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhi-Ning Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Ultrasound Department, the Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xi-Yuan Han
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Jinzhou Medical University Huludao Central Hospital Teaching Base, Jinzhou, China
| | - Yang Li
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
8
|
Shi M, Chen Z, Gong H, Peng Z, Sun Q, Luo K, Wu B, Wen C, Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024; 38:880-911. [PMID: 38088265 DOI: 10.1002/ptr.8066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.
Collapse
Affiliation(s)
- Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Sichuan Provincial Key Laboratory of Individualized Drug Therapy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baoyu Wu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
11
|
Wu L, Lin Y, Gao S, Wang Y, Pan H, Wang Z, Pozzolini M, Yang F, Zhang H, Yang Y, Xiao L, Xu Y. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Front Pharmacol 2023; 14:1200843. [PMID: 37346292 PMCID: PMC10279868 DOI: 10.3389/fphar.2023.1200843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is one of the most prominent neoplasm disorders and lacks efficacious treatments yet. Luteolin (3',4',5,7-tetrahydroxyflavone), a natural flavonoid commonly presented in plants, has been reported to delay the progression of TNBC. However, the precise mechanism is still elusive. We aimed to elucidate the inhibition and molecular regulation mechanism of luteolin on TNBC. Methods: The effects of luteolin on the biological functions of TNBC cells were first evaluated using the corresponding assays for cell counting kit-8 assay, flow cytometry, wound-healing assay, and transwell migration assay, respectively. The mechanism of luteolin on TNBC cells was then analyzed by RNA sequencing and verified by RT-qPCR, Western blot, transmission electron microscopy, etc. Finally, in vivo mouse tumor models were constructed to further confirm the effects of luteolin on TNBC. Results: Luteolin dramatically suppressed cell proliferation, invasion, and migration while favoring cell apoptosis in a dose- and time-dependent manner. In TNBC cells treated with luteolin, SGK1 and AKT3 were significantly downregulated while their downstream gene BNIP3 was upregulated. According to the results of 3D modeling, the direct binding of luteolin to SGK1 was superior to that of AKT3. The inhibition of SGK1 promoted FOXO3a translocation into the nucleus and led to the transcription of BNIP3 both in vitro and in vivo, eventually facilitating the interaction between BNIP3 and apoptosis and autophagy protein. Furthermore, the upregulation of SGK1, induced by luteolin, attenuated the apoptosis and autophagy of the TNBC. Conclusion: Luteolin inhibits TNBC by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.
Collapse
Affiliation(s)
- Ling Wu
- Medical College of Yangzhou University, Yangzhou, China
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yingda Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhaozhi Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Fengling Yang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Haiyan Zhang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yi Yang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|