1
|
Shih WH, Huang HL, HuangFu WC, Lin TE, Sung TY, Li MC, Huang GL, Chang YW, Yen SC, Hsieh HP, Hsu KC, Pan SL. Discovery of novel TANK-Binding Kinase 1 (TBK1) inhibitor against pancreatic ductal adenocarcinoma. Int J Biol Macromol 2024; 283:137296. [PMID: 39515714 DOI: 10.1016/j.ijbiomac.2024.137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, underscoring the urgent need for developing new therapies. The upregulation of TBK1 activity plays a crucial role in multiple pancreatic cancer-related signaling pathways, suggesting that inhibiting the kinase activity of TBK1 could be a promising strategy. Herein, we discovered a novel TBK1 inhibitor, LIB3S0280, using a structure-based virtual screening (SBVS) strategy. In the anti-proliferative and viability assays, LIB3S0280 showed significant inhibition against pancreatic cancer cell lines that highly express TBK1 with the GI50 values of 2.24 and 4.71 μM and IC50 values of 6.64 and 10.98 μM at 96 h. For the downstream targets, LIB3S0280 can inhibit TBK1 downstream signaling by decreasing the phosphorylation of IκBα and AKT better than a known TBK1 inhibitor, BX-795. Furthermore, PDAC cells were arrested in G2/M and underwent apoptosis or senescence with the treatment of LIB3S0280. These findings suggest that TBK1 inhibitor LIB3S0280 has great potential as a lead compound in the further development of a novel treatment for PDAC.
Collapse
Affiliation(s)
- Wan-Hsi Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Guan-Lin Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Wei Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Pedrosa P, Zhang Z, Nuñez-Quintela V, Macias D, Ge J, Denholm M, Dyas A, Estevez-Souto V, Lado-Fernandez P, Gonzalez P, Gomez M, Martin JE, Da Silva-Alvarez S, Collado M, Muñoz-Espín D. Inhibition of lung tumorigenesis by transient reprogramming in cancer cells. Cell Death Dis 2024; 15:857. [PMID: 39587064 PMCID: PMC11589828 DOI: 10.1038/s41419-024-07207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Oncogenic transformation and Oct4, Sox2, Klf4 and c-Myc (OSKM)-mediated induction of pluripotency are two independent and incompatible cellular fates. While continuous expression of OSKM can convert normal somatic cells into teratogenic pluripotent cells, it remains speculative what is the impact of transient OSKM expression in cancer cells. Here, we find that OSKM expression limits the growth of transformed lung cells by inducing apoptosis and senescence. We identify Oct4 and Klf4 as the main individual reprogramming factors responsible for this effect. Mechanistically, the induction of cell cycle inhibitor p21 downstream of the reprogramming factors acts as mediator of cell death and senescence. Using a variety of in vivo systems, including allografts, orthotopic transplantation and KRAS-driven lung cancer mouse models, we demonstrate that transient reprogramming by OSKM expression in cancer cells impairs tumor growth and reduces tumor burden. Altogether, our results show that the induction of transient reprogramming in cancer cells is antitumorigenic opening novel potential therapeutic avenues in oncology.
Collapse
Affiliation(s)
- Pablo Pedrosa
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Zhenguang Zhang
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Victor Nuñez-Quintela
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - David Macias
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jianfeng Ge
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mary Denholm
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna Dyas
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Valentin Estevez-Souto
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patricia Lado-Fernandez
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia Gonzalez
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Gomez
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Ezequiel Martin
- CMDL, Department of Oncology, SMCL, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Sabela Da Silva-Alvarez
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Manuel Collado
- Cell Senescence, Cancer and Aging Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Buchwaldt J, Fritsch T, Hartmann M, Witzel HR, Kloth M, Roth W, Tagscherer KE, Hartmann N. Decreased mitochondrial transcription factor A and mitochondrial DNA copy number promote cyclin-dependent kinase inhibitor 1A expression and reduce tumorigenic properties of colorectal cancer cells. Discov Oncol 2024; 15:701. [PMID: 39580766 PMCID: PMC11586319 DOI: 10.1007/s12672-024-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE Colorectal cancer is one of the most common and deadliest cancer types worldwide. In the last years, changes in the mitochondrial DNA (mtDNA) copy number have been described to correlate with the prognostic outcome for colorectal cancer patients by impacting different tumorigenic properties. One key regulator of mtDNA is the mitochondrial transcription factor A (TFAM) that acts as a limiting factor of mtDNA copy number. Here, we investigated the effect of TFAM deficiency on mtDNA and tumorigenic properties in the human colorectal cancer cell line SW480. METHODS TFAM expression was stably downregulated in the colorectal cancer cell line SW480 using the CRISPR-Cas9 approach. To dissect the molecular alterations induced by deletion of TFAM, RNA sequencing and gene set enrichment analysis was performed on TFAM-wild-type and TFAM-deficient SW480 cells. Functional consequences of TFAM downregulation were assessed in cellular assays. RESULTS We showed that TFAM deficiency leads to decreased mtDNA copy number and reduced expression of mtDNA-encoded genes. TFAM-deficient cells also revealed higher activity of senescence-associated β-galactosidase and decreased cell growth parameters. Moreover, RNA sequencing showed that the expression of cyclin dependent kinase inhibitor 1A (CDKN1A/p21) is significantly increased in TFAM-deficient cells. CONCLUSION Our results suggest that TFAM-induced changes of the mitochondrial genome lead to upregulated CDKN1A/p21 expression in colorectal cancer cells identifying p21 as a new possible linker between mitochondria and nucleus.
Collapse
Affiliation(s)
- Jessika Buchwaldt
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Tania Fritsch
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Monika Hartmann
- Department of Medicine III, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Hagen Roland Witzel
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Wang Y, Ma Q, Li H, Huang W, You J, Liu D. UBE2D1 promotes glioblastoma proliferation by modulating p21 ubiquitination. Mol Carcinog 2024; 63:1967-1979. [PMID: 39016669 DOI: 10.1002/mc.23786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Glioblastoma (GBM) cells exhibit aberrant proliferative abilities and resistance to conventional therapies. However, the mechanisms underlying these malignant phenotypes are poorly understood. In this study, we identified ubiquitin-conjugating enzyme E2D1 (UBE2D1) as a crucial stimulator of GBM development. It is highly expressed in GBM and closely associated with poor prognosis in patients with GBM. UBE2D1 knockdown inhibits GBM cell growth and leads to G1 cell cycle arrest. Mechanistically, UBCH5A binds to p21 at the protein level and induces the ubiquitination and degradation of p21. This negative regulation is mediated by STUB1. Our findings are the first to identify UBE2D1 as a key driver of GBM growth and provide a potential target for improving prognosis and therapy.
Collapse
Affiliation(s)
- Yongfeng Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jia You
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dian Liu
- Department of Lymphoma and Abdominal Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Gu W, Wang M, Wu Z, Cai Y. Ubiquitination of p21 by E3 ligase RNF135 promotes the proliferation of human glioblastoma cells. Oncol Lett 2024; 28:406. [PMID: 38988442 PMCID: PMC11234804 DOI: 10.3892/ol.2024.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous tumor of the central nervous system with a high mortality rate. The upregulation of RING finger protein 135 (RNF135), an E3 ligase, has been observed in GBM, but the associated mechanisms have not been fully elucidated. The aim of the present study was to identify the substrate of RNF135 and study its functions in GBM. Bioinformatics analyses were performed. In addition, RNF135 was overexpressed or knocked down in human U87 and U251 GBM cells, and the effect on cell proliferation was analyzed using Cell Counting Kit-8 and colony formation assays. Furthermore, the interaction of RNF135 with its potential substrate was analyzed using glutathione S-transferase, yeast two-hybrid, immunoprecipitation (IP), co-IP and immunoblotting assays. Bioinformatics analysis indicated that RNF135 serves as a marker of poor prognosis in GBM. The overexpression of RNF135 was demonstrated to promote the proliferation of GBM cells, while the knockdown of RNF135 inhibited GBM cell growth. In addition, the results of the interaction experiments indicate that RNF135 interacts with p21 and mediates the degradation of p21 by ubiquitination. The major site of RNF135-mediated p21 ubiquitination was identified as K163. Further experiments demonstrated that RNF135 promotes the proliferation of GBM cells mainly via p21. In summary, these findings suggest that RNF135 has potential as a therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Weiting Gu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ming Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhebao Wu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
7
|
Yang T, Qi F, Guo F, Shao M, Song Y, Ren G, Linlin Z, Qin G, Zhao Y. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med 2024; 30:71. [PMID: 38797859 PMCID: PMC11128119 DOI: 10.1186/s10020-024-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Qi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Milosevic E, Novkovic M, Cenni V, Bavelloni A, Kojic S, Jasnic J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. Histochem Cell Biol 2024; 161:435-444. [PMID: 38396247 DOI: 10.1007/s00418-024-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
9
|
Thimoteo RRC, Neto PN, Costa DSS, da Mota Ramalho Costa F, Brito DC, Costa PRR, de Almeida Simão T, Dias AG, Justo G. Microarray data analysis of antileukemic action of Cinnamoylated benzaldehyde LQB-461 in Jurkat cell line. Mol Biol Rep 2024; 51:187. [PMID: 38270684 DOI: 10.1007/s11033-023-09030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Leukemias stand out for being the main type of childhood cancer in the world. Current treatments have strong side effects for patients, and there is still a high rate of development of resistance to multidrug therapy. Previously, our research group developed a structure-activity study with novel synthetic molecules analogous to LQB-278, described as an essential molecule with in vitro antileukemic action. Among these analogs, LQB-461 stood out, presenting more significant antileukemic action compared to its derivative LQB-278, with cytostatic and cytotoxicity effect by apoptosis, inducing caspase-3, and increased sub-G1 phase on cell cycle analysis. METHODS AND RESULTS Deepening the study of the mechanism of action of LQB-461 in Jurkat cells in vitro, a microarray assay was carried out, which confirmed the importance of the apoptosis pathway in the LQB-461 activity. Through real-time PCR, we validated an increased expression of CDKN1A and BAX genes, essential mediators of the apoptosis intrinsic pathway. Through the extrinsic apoptosis pathway, we found an increased expression of the Fas receptor by flow cytometry, showing the presence of a more sensitive population and another more resistant to death. Considering the importance of autophagy in cellular resistance, it was demonstrated by western blotting that LQB-461 decreased LC-3 protein expression, an autophagic marker. CONCLUSIONS These results suggest that this synthetic molecule LQB-461 induces cell death by apoptosis in Jurkat cells through intrinsic and extrinsic pathways and inhibits autophagy, overcoming some mechanisms of cell resistance related to this process, which differentiates LQB-461 of other drugs used for the leukemia treatment.
Collapse
Affiliation(s)
| | | | - Debora S S Costa
- Instituto de Pesquisas Biomédicas - HNMD Marinha do Brazil, Rio de Janeiro, RJ, Brazil
| | | | | | - Paulo R R Costa
- Laboratório de Química Bioorgânica, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Ayres G Dias
- Departamento de Química Orgânica, UERJ, Rio de Janeiro, RJ, Brazil
| | - Graça Justo
- Departamento de Bioquímica, UERJ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Ooi LC, Ho V, Zhu JZ, Lim S, Chung L, Abubakar A, Rutland T, Chua W, Ng W, Lee M, Morgan M, MacKenzie S, Lee CS. p21 as a Predictor and Prognostic Indicator of Clinical Outcome in Rectal Cancer Patients. Int J Mol Sci 2024; 25:725. [PMID: 38255799 PMCID: PMC10815780 DOI: 10.3390/ijms25020725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The cell cycle plays a key and complex role in the development of human cancers. p21 is a potent cyclin-dependent kinase inhibitor (CDKI) involved in the promotion of cell cycle arrest and the regulation of cellular senescence. Altered p21 expression in rectal cancer cells may affect tumor cells' behavior and resistance to neoadjuvant and adjuvant therapy. Our study aimed to ascertain the relationship between the differential expression of p21 in rectal cancer and patient survival outcomes. Using tissue microarrays, 266 rectal cancer specimens were immunohistochemically stained for p21. The expression patterns were scored separately in cancer cells retrieved from the center and the periphery of the tumor; compared with clinicopathological data, tumor regression grade (TRG), disease-free, and overall survival. Negative p21 expression in tumor periphery cells was significantly associated with longer overall survival upon the univariate (p = 0.001) and multivariable analysis (p = 0.003, HR = 2.068). Negative p21 expression in tumor periphery cells was also associated with longer disease-free survival in the multivariable analysis (p = 0.040, HR = 1.769). Longer overall survival times also correlated with lower tumor grades (p= 0.011), the absence of vascular and perineural invasion (p = 0.001; p < 0.005), the absence of metastases (p < 0.005), and adjuvant treatment (p = 0.009). p21 expression is a potential predictive and prognostic biomarker for clinical outcomes in rectal cancer patients. Negative p21 expression in tumor periphery cells demonstrated significant association with longer overall survival and disease-free survival. Larger prospective studies are warranted to investigate the ability of p21 to identify rectal cancer patients who will benefit from neoadjuvant and adjuvant therapy.
Collapse
Affiliation(s)
- Li Ching Ooi
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
| | - Vincent Ho
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Jing Zhou Zhu
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
| | - Stephanie Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Liping Chung
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Tristan Rutland
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Matthew Morgan
- Department of Colorectal Surgery, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Scott MacKenzie
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Department of Colorectal Surgery, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (L.C.O.); (J.Z.Z.); (T.R.); (C.S.L.)
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia; (L.C.); (A.A.); (W.C.); (S.M.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
11
|
Riviere-Cazaux C, Carlstrom LP, Neth BJ, Olson IE, Rajani K, Rahman M, Ikram S, Mansour MA, Mukherjee B, Warrington AE, Short SC, von Zglinicki T, Brown DA, Burma S, Tchkonia T, Schafer MJ, Baker DJ, Kizilbash SH, Kirkland JL, Burns TC. An untapped window of opportunity for glioma: targeting therapy-induced senescence prior to recurrence. NPJ Precis Oncol 2023; 7:126. [PMID: 38030881 PMCID: PMC10687268 DOI: 10.1038/s41698-023-00476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.
Collapse
Affiliation(s)
| | | | | | - Ian E Olson
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Rochester, MN, USA
| | - Samar Ikram
- Department of Neurological Surgery, Rochester, MN, USA
| | | | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Rochester, MN, USA
- Department of Neurology, Rochester, MN, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St. James's, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Desmond A Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Rochester, MN, USA
| | | | - James L Kirkland
- Department of Pediatric and Adolescent Medicine, Rochester, MN, USA
- Department of Medicine, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Rochester, MN, USA.
| |
Collapse
|
12
|
Zhang X, Tang C, Lian J, Jiang Y. A2ML1 Inhibits Esophageal Squamous Cell Carcinoma Progression and Serves as a Novel Prognostic Biomarker. Can J Gastroenterol Hepatol 2023; 2023:5557546. [PMID: 37954860 PMCID: PMC10637849 DOI: 10.1155/2023/5557546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Studies have established a correlation between α2-macroglobulin-like 1 (A2ML1) and the prognosis of lung, pancreatic, and breast cancers; however, research on its involvement in the pathogenesis of esophageal carcinoma remains limited. Therefore, in this study, we aimed to investigate the role of A2ML1 in the progression of esophageal squamous cell carcinoma (ESCC). Immunohistochemical staining was employed to assess the expression level of A2ML1 protein in both tumor and adjacent normal tissues of patients with ESCC. The Kaplan-Meier method, along with univariate and multivariate Cox risk ratio analyses, was used to determine survival rates and prognostic factors. Furthermore, two human ESCC cell lines, KYSE30 and KYSE150, were used to assess the effect of A2ML1 overexpression on cell proliferation and apoptosis. A human apoptosis antibody kit was also used to analyze the downstream action proteins of A2ML1, and a nude mouse xenotransplantation model was used to evaluate the effect of A2ML1 on ESCC tumorigenesis in vivo. The protein level of A2ML1 in ESCC tissues was significantly lower than that in normal esophageal tissues, and higher A2ML1 protein levels were associated with smaller ESCC tumor sizes and improved tumor-specific survival rates. Multivariate analysis established A2ML1 as a novel independent prognostic factor for ESCC. Moreover, A2ML1 overexpression significantly inhibited ESCC cell proliferation and promoted apoptosis. A2ML1 consistently inhibited tumor growth in mouse models. Furthermore, the human apoptotic antibody kit results showed increased expression of the proliferation-inhibiting protein p21 downstream of KYSE150 cells overexpressing A2ML1. Our findings demonstrate that a correlation exists between A2ML1 and ESCC prognosis and that A2ML1 plays an antitumor role in ESCC progression. This study underscores the potential of A2ML1 as a novel biomarker for predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu 223300, China
| | - Chaogui Tang
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu 223300, China
| | - Jianchun Lian
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu 223300, China
| | - Yuzhang Jiang
- Department of Medical Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu 223300, China
| |
Collapse
|