1
|
Baracuhy EM, Cormier O, Davola ME, Collins S, Mossman K. Virus replication is not required for oncolytic bovine herpesvirus-1 immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200906. [PMID: 39691853 PMCID: PMC11650296 DOI: 10.1016/j.omton.2024.200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Oncolytic viruses are a promising approach for cancer treatment where viruses selectively target and kill cancer cells while also stimulating an immune response. Among viruses with this ability, bovine herpesvirus-1 (BoHV-1) has several advantages, including observations suggesting it may not require viral replication for its anti-cancer effects. We previously demonstrated that binding and penetration of enveloped virus particles are sufficient to trigger intrinsic and innate immune signaling in normal cells, while other groups have published the efficacy of non-replicating viruses as viable immunotherapies in different cancer models. In this work, we definitively show that live and UV-inactivated (UV) (non-replicating) BoHV-1-based regimens extend survival of tumor-bearing mice to similar degrees and induce infiltration of similar immune cell populations, with the exception of neutrophils. Transcriptomic analysis of tumors treated with either live or UV BoHV-1-based regimens revealed similar pathway enrichment and a subset of overlapping differentially regulated genes, suggesting live and UV BoHV-1 have similar mechanisms of activity. Last, we present a gene signature across our in vitro and in vivo models that could potentially be used to validate new BoHV-1 therapeutics. This work contributes to the growing body of literature showing that replication may not be necessary for therapeutic efficacy of viral immunotherapies.
Collapse
Affiliation(s)
- Enzo Mongiovi Baracuhy
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Olga Cormier
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Maria Eugenia Davola
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Susan Collins
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Karen Mossman
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Mohamud Y, Lin JC, Hwang SW, Bahreyni A, Wang ZC, Luo H. Coxsackievirus B3 Activates Macrophages Independently of CAR-Mediated Viral Entry. Viruses 2024; 16:1456. [PMID: 39339932 PMCID: PMC11437450 DOI: 10.3390/v16091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses are a genus of small RNA viruses that are responsible for approximately one billion global infections annually. These infections range in severity from the common cold and flu-like symptoms to more severe diseases, such as viral myocarditis, pancreatitis, and neurological disorders, that continue to pose a global health challenge with limited therapeutic strategies currently available. In the current study, we sought to understand the interaction between coxsackievirus B3 (CVB3), which is a model enterovirus, and macrophage cells, as there is limited understanding of how this virus interacts with macrophage innate immune cells. Our study demonstrated that CVB3 can robustly activate macrophages without apparent viral replication in these cells. We also showed that myeloid cells lacked the viral entry receptor coxsackievirus and adenovirus receptor (CAR). However, the expression of exogenous CAR in RAW264.7 macrophages was unable to overcome the viral replication deficit. Interestingly, the CAR expression was associated with altered inflammatory responses during prolonged infection. Additionally, we identified the autophagy protein LC3 as a novel stimulus for macrophage activation. These findings provide new insights into the mechanisms of CVB3-induced macrophage activation and its implications for viral pathogenesis.
Collapse
Affiliation(s)
- Yasir Mohamud
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Jingfei Carly Lin
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo Wendy Hwang
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Amirhossein Bahreyni
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Zhihan Claire Wang
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
3
|
Deng YX, Zhao YJ, Nong QH, Qiu HM, Guo QL, Hu H. Predictive Value of Pretreatment Neutrophil to Albumin Ratio in Response to Neoadjuvant Chemotherapy of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:393-402. [PMID: 39071809 PMCID: PMC11283269 DOI: 10.2147/bctt.s468239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Background The immune system appears to play a crucial role in how breast cancer responds to chemotherapy. In this study, we investigated a peripheral marker of immune and inflammation named the neutrophil to albumin ratio (NAR) to explore its potential relationship with pathological complete response (pCR) in locally advanced breast cancer patients who underwent neoadjuvant chemotherapy (NAC). Methods We conducted a retrospective analysis of 212 consecutive breast cancer patients who received NAC. The NAR was calculated by examining the complete blood cell count and albumin level in peripheral blood before starting NAC. Through ROC curve analysis, we determined the optimal cutoff value for NAR as 0.0877. We used Pearson's chi-square test or Fisher's exact test to evaluate the relationship between NAR and pCR, as well as other clinical and pathological characteristics. Logistic regression models were employed for univariate and multivariate analyses. Results The results of both univariate and multivariate logistic regression analyses showed that NAR was associated with tumor pathological regression. The NAR high group had a higher pCR rate compared to the NAR low group (OR 3.127 [95% CI 1.545-6.328]; p = 0.002). Conclusion According to this study, it was observed that patients with breast cancer who had high levels of NAR were more likely to achieve pCR when undergoing NAC.
Collapse
Affiliation(s)
- Yu-Xiang Deng
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People’s Republic of China
| | - Yu-Jie Zhao
- Department of Radiotherapy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People’s Republic of China
| | - Qiao-Hong Nong
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People’s Republic of China
| | - Hong-Mei Qiu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People’s Republic of China
| | - Qiao-Li Guo
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People’s Republic of China
| | - Hui Hu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
4
|
Liu RJ, Yu XD, Yan SS, Guo ZW, Zao XB, Zhang YS. Ferroptosis, pyroptosis and necroptosis in hepatocellular carcinoma immunotherapy: Mechanisms and immunologic landscape (Review). Int J Oncol 2024; 64:63. [PMID: 38757345 PMCID: PMC11095606 DOI: 10.3892/ijo.2024.5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer‑related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi‑tyrosine kinase inhibitors approved for first‑line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non‑apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.
Collapse
Affiliation(s)
- Rui-Jia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Xu-Dong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing 101121, P.R. China
| | - Shao-Shuai Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zi-Wei Guo
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, P.R. China
| | - Xiao-Bin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yao-Sheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing 101121, P.R. China
| |
Collapse
|
5
|
Bahreyni A, Mohamud Y, Luo H. Oncolytic virus-based combination therapy in breast cancer. Cancer Lett 2024; 585:216634. [PMID: 38309616 DOI: 10.1016/j.canlet.2024.216634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/05/2024]
Abstract
Breast cancer continues to pose significant challenges in the field of oncology, necessitating innovative treatment approaches. Among these, oncolytic viruses have emerged as a promising frontier in the battle against various types of cancer, including breast cancer. These viruses, often genetically modified, have the unique ability to selectively infect and destroy cancer cells while leaving healthy cells unharmed. Their efficacy in tumor eradication is not only owing to direct cell lysis but also relies on their capacity to activate the immune system, thereby eliciting a potent and sustained antitumor response. While oncolytic viruses represent a significant advancement in cancer treatment, the complexity and adaptability inherent to cancer require a diverse array of therapies. The concept of combining oncolytic viruses with other treatment modalities, such as chemotherapy, immunotherapy, and targeted therapies, has received significant attention. This synergistic approach capitalizes on the strengths of each therapy, thus creating a comprehensive strategy to tackle the heterogeneous and evolving nature of breast cancer. The purpose of this review is to provide an in-depth discussion of preclinical and clinical viro-based combination therapy in the context of breast cancer.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
6
|
Sun Y, Lu Z, Taylor JA, Au JLS. Quantitative image analysis of intracellular protein translocation in 3-dimensional tissues for pharmacodynamic studies of immunogenic cell death. J Control Release 2024; 365:89-100. [PMID: 37981052 PMCID: PMC11078532 DOI: 10.1016/j.jconrel.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
A recent development in cancer chemotherapy is to use cytotoxics to induce tumor-specific immune response through immunogenic cell death (ICD). In ICD, calreticulin is translocated from endoplasmic reticulum to cell membrane (ecto-CRT) which serves as the 'eat-me-signal' to antigen-presenting cells. Ecto-CRT measurements, e.g., by ecto-CRT immunostaining plus flow cytometry, can be used to study the pharmacodynamics of ICD in single cells, whereas ICD studies in intact 3-dimensional tissues such as human tumors require different approaches. The present study described a method that used (a) immunostaining with fluorescent antibodies followed by confocal microscopy to obtain the spatial locations of two molecules-of-interest (CRT and a marker protein WGA), and (b) machine-learning (trainable WEKA segmentation) and additional image processing tools to locate the target molecules, remove the interfering signals in the nucleus, cytosol and extracellular space, enable the distinction of the inner and outer edges of the cell membrane and thereby identify the cells with ecto-CRT. This method, when applied to 3-dimensional human bladder cancer cell spheroids, yielded drug-induced ecto-CRT measurements that were qualitatively comparable to the flow cytometry results obtained with single cells disaggregated from spheroids. This new method was applied to study drug-induced ICD in short-term cultures of surgical specimens of human patient bladder tumors.
Collapse
Affiliation(s)
- Yajing Sun
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73117, United States of America
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States of America; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States of America
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Jessie L S Au
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73117, United States of America; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States of America; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States of America; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|