1
|
Park MA, Jacobson R, Genilo-Delgado M, Mohammadi A, Moran-Segura C, Alhassan S, Nakanishi Y, Permuth JB, Imanirad I, Dineen SP. The Transcriptomic Landscapes of Appendiceal Primary and Metastatic Tumors are Distinct. Ann Surg Oncol 2025:10.1245/s10434-025-16939-0. [PMID: 39987388 DOI: 10.1245/s10434-025-16939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Improved understanding about the pathobiology of appendiceal cancers (AC) and resulting metastasis is required for the development of novel treatments. The tumor microenvironment in AC is heterogeneous and incompletely characterized. The objective of this study was to leverage spatial high-plex technology to evaluate the transcriptomic landscape of epithelial and stromal cells in primary AC tumors, adjacent normal appendix, and corresponding peritoneal metastasis. METHODS A tissue microarray (TMA) containing cores from 14 unique patients having matched primary tumor, adjacent normal appendix, and peritoneal metastases was analyzed with digital spatial profiling (NanoString, GeoMx) using pancytokeratin (PCK) to delineate stroma (PCK-) from epithelium (PCK+). Then RNA sequencing was performed to measure transcript abundance separately within the stromal and epithelial compartments. RESULTS Transcriptomic analysis demonstrated differences between tumor and stromal compartments in both primary tumor and metastatic sites. Primary and metastatic tumor stroma (PCK-) demonstrated greater expression of ribosomal biogenesis pathways than normal appendiceal tissue. Primary and metastatic tumors were generally similar with respect to transcription. However, within the epithelial compartment (PCK+), peritoneal metastases exhibited upregulated cytoskeletal and collagen metabolism pathways/genes compared with primary tumor. CONCLUSIONS The study data indicated that although appendiceal peritoneal disease is transcriptionally similar to the primary tumor, potentially important distinctions exist between metastatic and primary disease. Differences appear to be driven predominantly by changes in collagen metabolism at the peritoneal site. A better understanding of both tumor and stromal compartments of metastatic disease will be essential to improving therapeutic options, specifically systemic treatment, which is characteristically ineffective.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Richard Jacobson
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Amir Mohammadi
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Carlos Moran-Segura
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, FL, USA
| | - Solomon Alhassan
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Jennifer B Permuth
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Iman Imanirad
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sean P Dineen
- Department of GI Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
2
|
Huang B, Chen Y, Yuan S. Application of Spatial Transcriptomics in Digestive System Tumors. Biomolecules 2024; 15:21. [PMID: 39858416 PMCID: PMC11761220 DOI: 10.3390/biom15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In the field of digestive system tumor research, spatial transcriptomics technologies are used to delve into the spatial structure and the spatial heterogeneity of tumors and to analyze the tumor microenvironment (TME) and the inter-cellular interactions within it by revealing gene expression in tumors. These technologies are also instrumental in the diagnosis, prognosis, and treatment of digestive system tumors. This review provides a concise introduction to spatial transcriptomics and summarizes recent advances, application prospects, and technical challenges of these technologies in digestive system tumor research. This review also discusses the importance of combining spatial transcriptomics with single-cell RNA sequencing (scRNA-seq), artificial intelligence, and machine learning in digestive system cancer research.
Collapse
Affiliation(s)
- Bowen Huang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| | - Yingjia Chen
- Health Science Center, Peking University, Beijing 100191, China
| | - Shuqiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| |
Collapse
|
3
|
Iseas S, Mariano G, Gros L, Baba-Hamed N, De Parades V, Adam J, Raymond E, Abba MC. Unraveling Emerging Anal Cancer Clinical Biomarkers from Current Immuno-Oncogenomics Advances. Mol Diagn Ther 2024; 28:201-214. [PMID: 38267771 PMCID: PMC10925578 DOI: 10.1007/s40291-023-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy associated with high-risk human papillomavirus (HPV) and is currently one of the fastest-growing causes of cancer incidence and mortality in developed countries. Although next-generation sequencing technologies (NGS) have revolutionized cancer and immuno-genomic research in various tumor types, a limited amount of clinical research has been developed to investigate the expression and the functional characterization of genomic data in ASCC. Herein, we comprehensively assess recent advancements in "omics" research, including a systematic analysis of genome-based studies, aiming to identify the most relevant ASCC cancer driver gene expressions and their associated signaling pathways. We also highlight the most significant biomarkers associated with anal cancer progression, gene expression of potential diagnostic biomarkers, expression of therapeutic drug targets, and emerging treatment opportunities. This review stresses the urgent need for developing target-specific therapies in ASCC. By illuminating the molecular characteristics and drug-target expression in ASCC, this study aims to provide insights for the development of precision medicine in anal cancer.
Collapse
Affiliation(s)
- Soledad Iseas
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France.
| | - Golubicki Mariano
- Oncology Unit, Gastroenterology Hospital "Dr. Carlos Bonorino Udaondo", Av. Caseros 2061, C1264, Ciudad Autónoma de Buenos Aires, Argentina
| | - Louis Gros
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Nabil Baba-Hamed
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Vincent De Parades
- Proctology Unit, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Julien Adam
- Pathology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Eric Raymond
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Martin Carlos Abba
- Basic and Applied Immunological Research Center (CINIBA), School of Medical Sciences, NationalUniversity of La Plata, Calle 60 y 120, C1900, La Plata, Argentina.
| |
Collapse
|
4
|
Samsom KG, Bosch LJW, Schipper LJ, Schout D, Roepman P, Boelens MC, Lalezari F, Klompenhouwer EG, de Langen AJ, Buffart TE, van Linder BMH, van Deventer K, van den Burg K, Unmehopa U, Rosenberg EH, Koster R, Hogervorst FBL, van den Berg JG, Riethorst I, Schoenmaker L, van Beek D, de Bruijn E, van der Hoeven JJM, van Snellenberg H, van der Kolk LE, Cuppen E, Voest EE, Meijer GA, Monkhorst K. Optimized whole-genome sequencing workflow for tumor diagnostics in routine pathology practice. Nat Protoc 2024; 19:700-726. [PMID: 38092944 DOI: 10.1038/s41596-023-00933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/19/2023] [Indexed: 03/10/2024]
Abstract
Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.
Collapse
Affiliation(s)
- Kris G Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda J W Bosch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Luuk J Schipper
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
| | - Daoin Schout
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferry Lalezari
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Adrianus J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tineke E Buffart
- Department of Medical Oncology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Berit M H van Linder
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kelly van Deventer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kay van den Burg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Unga Unmehopa
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Efraim H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof Koster
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Immy Riethorst
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Lieke Schoenmaker
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Daphne van Beek
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Ewart de Bruijn
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | | | | | | | - Edwin Cuppen
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Abramenko N, Vellieux F, Veselá K, Kejík Z, Hajduch J, Masařík M, Babula P, Hoskovec D, Pacák K, Martásek P, Smetana K, Jakubek M. Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules. Sci Rep 2024; 14:3043. [PMID: 38321096 PMCID: PMC10847107 DOI: 10.1038/s41598-024-51804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Karel Pacák
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00, Prague, Czech Republic.
| |
Collapse
|
6
|
Huffman BM, Singh H, Ali LR, Horick N, Wang SJ, Hoffman MT, Metayer KA, Murray S, Bird A, Abrams TA, Biller LH, Chan JA, Meyerhardt JA, McCleary NJ, Goessling W, Patel AK, Wisch JS, Yurgelun MB, Mouw K, Reardon B, Van Allen EM, Zerillo JA, Clark JW, Parikh A, Mayer RJ, Schlechter B, Ng K, Kumar S, Del Vecchio Fitz C, Kuperwasser C, Hanna GJ, Coveler AL, Rubinson DA, Welsh EL, Pfaff K, Rodig S, Dougan SK, Cleary JM. Biomarkers of pembrolizumab efficacy in advanced anal squamous cell carcinoma: analysis of a phase II clinical trial and a cohort of long-term responders. J Immunother Cancer 2024; 12:e008436. [PMID: 38272561 PMCID: PMC10824013 DOI: 10.1136/jitc-2023-008436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Recent trials suggest that programmed cell death 1 (PD-1)-directed immunotherapy may be beneficial for some patients with anal squamous cell carcinoma and biomarkers predictive of response are greatly needed. METHODS This multicenter phase II clinical trial (NCT02919969) enrolled patients with metastatic or locally advanced incurable anal squamous cell carcinoma (n=32). Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint of the trial was objective response rate (ORR). Exploratory objectives included analysis of potential predictive biomarkers including assessment of tumor-associated immune cell populations with multichannel immunofluorescence and analysis of circulating tumor tissue modified viral-human papillomavirus DNA (TTMV-HPV DNA) using serially collected blood samples. To characterize the clinical features of long-term responders, we combined data from our prospective trial with a retrospective cohort of patients with anal cancer treated with anti-PD-1 immunotherapy (n=18). RESULTS In the phase II study, the ORR to pembrolizumab monotherapy was 9.4% and the median progression-free survival was 2.2 months. Despite the high level of HPV positivity observed with circulating TTMV-HPV DNA testing, the majority of patients had low levels of tumor-associated CD8+PD-1+ T cells on pretreatment biopsy. Patients who benefited from pembrolizumab had decreasing TTMV-HPV DNA scores and a complete responder's TTMV-HPV DNA became undetectable. Long-term pembrolizumab responses were observed in one patient from the trial (5.3 years) and three patients (2.5, 6, and 8 years) from the retrospective cohort. Long-term responders had HPV-positive tumors, lacked liver metastases, and achieved a radiological complete response. CONCLUSIONS Pembrolizumab has durable efficacy in a rare subset of anal cancers. However, despite persistence of HPV infection, indicated by circulating HPV DNA, most advanced anal cancers have low numbers of tumor-associated CD8+PD-1+ T cells and are resistant to pembrolizumab.
Collapse
Affiliation(s)
- Brandon M Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lestat R Ali
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nora Horick
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - S Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Megan T Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Katherine A Metayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shayla Murray
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexandra Bird
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Thomas A Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Leah H Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer A Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nadine J McCleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Anuj K Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey S Wisch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kent Mouw
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jessica A Zerillo
- Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jeffrey W Clark
- Department of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aparna Parikh
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert J Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew L Coveler
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma L Welsh
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathleen Pfaff
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Radosevic-Robin N, Kossai M, Penault-Llorca F. New-generation technologies for spatial tissue analysis, indispensable tools for deciphering intratumor heterogeneity in the development of antibody-drug conjugates and radio-immunoconjugates for cancer treatment. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:28. [PMID: 38751472 PMCID: PMC11093076 DOI: 10.21037/tbcr-23-38] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 05/18/2024]
Abstract
Technologies allowing in situ tissue molecular analysis of the "high-plex" type (>20 molecules per tissue section) are the 21st century inventions that are revolutionizing our knowledge of the biology of malignant tumors and many benign alterations. These technologies are based on specific probe labeling systems for the detection of tissue components [proteins, messenger RNA (mRNA)], as well as on detailed image analysis, combined with computational tools. We are synthetically presenting technologies based on image analysis, such as multiplex immunofluorescence (mIF), imaging mass cytometry (IMC), and multiplexed ion beam imaging (MIBI), as well as the ones not based on image analysis, such as multiplex in situ hybridizations (ISHs) using various principles. All of them are supported by powerful software which enable both tissue segmentation and data analysis. In the context of cancer treatment personalization, these technologies can reveal areas of tumor tissue and/or cellular subpopulations that are responsible for good or bad responses to anticancer drugs. Thus, they represent an unprecedented aid in the exploration of intratumor heterogeneity (ITH), which has already been shown to be one of the main reasons for the therapeutic failure of targeted anticancer treatments. The arrival of antibody-drug conjugates (ADCs) and radio-immunoconjugates (RICs) in the therapeutic arsenal in oncology imposes a deep exploration of molecular ITH, where technologies of spatial tissue analysis reveal an emerging category of biomarkers-spatial biomarkers.
Collapse
Affiliation(s)
- Nina Radosevic-Robin
- Platform for Advanced or/and Novel Tissue Analyses (TANYA), Department of Pathology, The Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, France
- University Clermont Auvergne, INSERM U1240 [Molecular Imaging & Theragnostic Strategies (IMOST)], Clermont-Ferrand, France
| | - Myriam Kossai
- Platform for Advanced or/and Novel Tissue Analyses (TANYA), Department of Pathology, The Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, France
- University Clermont Auvergne, INSERM U1240 [Molecular Imaging & Theragnostic Strategies (IMOST)], Clermont-Ferrand, France
| | - Frederique Penault-Llorca
- Platform for Advanced or/and Novel Tissue Analyses (TANYA), Department of Pathology, The Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, France
- University Clermont Auvergne, INSERM U1240 [Molecular Imaging & Theragnostic Strategies (IMOST)], Clermont-Ferrand, France
| |
Collapse
|