1
|
Xu R, Wang K, Peng B, Zhou X, Wang C, Lu T, Shi J, Zhao J, Zhang L. Evaluating peritumoral and intratumoral radiomics signatures for predicting lymph node metastasis in surgically resectable non-small cell lung cancer. Front Oncol 2024; 14:1427743. [PMID: 39464711 PMCID: PMC11502299 DOI: 10.3389/fonc.2024.1427743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
Background Whether lymph node metastasis in non-small cell lung cancer is critical to clinical decision-making. This study was to develop a non-invasive predictive model for preoperative assessing lymph node metastasis in patients with non-small cell lung cancer (NSCLC) using radiomic features from chest CT images. Materials & methods In this retrospective study, 247 patients with resectable non-small cell lung cancer (NSCLC) were enrolled. These individuals underwent preoperative chest CT scans that identified lung nodules, followed by lobectomies and either lymph node sampling or dissection. We extracted both intratumoral and peritumoral radiomic features from the CT images, which were used as covariates to predict the lymph node metastasis status. By using ROC curves, Delong tests, Calibration curve, and DCA curves, intra-tumoral-peri-tumoral model performance were compared with models using only intratumoral features or clinical information. Finally, we constructed a model that combined clinical information and radiomic features to increase clinical applicability. Results This study enrolled 247 patients (117 male and 130 females). In terms of predicting lymph node metastasis, the intra-tumoral-peri-tumoral model (0.953, 95%CI 0.9272-0.9792) has a higher AUC compared to the intratumoral radiomics model (0.898, 95%CI 0.8553-0.9402) and the clinical model (0.818, 95%CI 0.7653-0.8709). The DeLong test shows that the performance of the Intratumoral and Peritumoral radiomics models is superior to that of the Intratumoral or clinical feature model (p <0.001). In addition, to increase the clinical applicability of the model, we combined the intratumoral-peritumoral model and clinical information to construct a nomogram. Nomograms still have good predictive performance. Conclusion The radiomics-based model incorporating both peritumoral and intratumoral features from CT images can more accurately predict lymph node metastasis in NSCLC than traditional methods.
Collapse
Affiliation(s)
- Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Li Y, Deng J, Ma X, Li W, Wang Z. Diagnostic accuracy of CT and PET/CT radiomics in predicting lymph node metastasis in non-small cell lung cancer. Eur Radiol 2024:10.1007/s00330-024-11036-4. [PMID: 39223336 DOI: 10.1007/s00330-024-11036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES This study evaluates the accuracy of radiomics in predicting lymph node metastasis in non-small cell lung cancer, which is crucial for patient management and prognosis. METHODS Adhering to PRISMA and AMSTAR guidelines, we systematically reviewed literature from March 2012 to December 2023 using databases including PubMed, Web of Science, and Embase. Radiomics studies utilizing computed tomography (CT) and positron emission tomography (PET)/CT imaging were included. The quality of studies was appraised with QUADAS-2 and RQS tools, and the TRIPOD checklist assessed model transparency. Sensitivity, specificity, and AUC values were synthesized to determine diagnostic performance, with subgroup and sensitivity analyses probing heterogeneity and a Fagan plot evaluating clinical applicability. RESULTS Our analysis incorporated 42 cohorts from 22 studies. CT-based radiomics demonstrated a sensitivity of 0.84 (95% CI: 0.79-0.88, p < 0.01) and specificity of 0.82 (95% CI: 0.75-0.87, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.92), indicating no publication bias (p-value = 0.54 > 0.05). PET/CT radiomics showed a sensitivity of 0.82 (95% CI: 0.76-0.86, p < 0.01) and specificity of 0.86 (95% CI: 0.81-0.90, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.93), with a slight publication bias (p-value = 0.03 < 0.05). Despite high clinical utility, subgroup analysis did not clarify heterogeneity sources, suggesting influences from possible factors like lymph node location and small subgroup sizes. CONCLUSIONS Radiomics models show accuracy in predicting lung cancer lymph node metastasis, yet further validation with larger, multi-center studies is necessary. CLINICAL RELEVANCE STATEMENT Radiomics models using CT and PET/CT imaging may improve the prediction of lung cancer lymph node metastasis, aiding personalized treatment strategies. RESEARCH REGISTRATION UNIQUE IDENTIFYING NUMBER (UIN) International Prospective Register of Systematic Reviews (PROSPERO), CRD42023494701. This study has been registered on the PROSPERO platform with a registration date of 18 December 2023. https://www.crd.york.ac.uk/prospero/ KEY POINTS: The study explores radiomics for lung cancer lymph node metastasis detection, impacting surgery and prognosis. Radiomics improves the accuracy of lymph node metastasis prediction in lung cancer. Radiomics can aid in the prediction of lymph node metastasis in lung cancer and personalized treatment.
Collapse
Affiliation(s)
- Yuepeng Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Junyue Deng
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, China.
| |
Collapse
|
3
|
Barcroft JF, Linton-Reid K, Landolfo C, Al-Memar M, Parker N, Kyriacou C, Munaretto M, Fantauzzi M, Cooper N, Yazbek J, Bharwani N, Lee SR, Kim JH, Timmerman D, Posma J, Savelli L, Saso S, Aboagye EO, Bourne T. Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound. NPJ Precis Oncol 2024; 8:41. [PMID: 38378773 PMCID: PMC10879532 DOI: 10.1038/s41698-024-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Ultrasound-based models exist to support the classification of adnexal masses but are subjective and rely upon ultrasound expertise. We aimed to develop an end-to-end machine learning (ML) model capable of automating the classification of adnexal masses. In this retrospective study, transvaginal ultrasound scan images with linked diagnoses (ultrasound subjective assessment or histology) were extracted and segmented from Imperial College Healthcare, UK (ICH development dataset; n = 577 masses; 1444 images) and Morgagni-Pierantoni Hospital, Italy (MPH external dataset; n = 184 masses; 476 images). A segmentation and classification model was developed using convolutional neural networks and traditional radiomics features. Dice surface coefficient (DICE) was used to measure segmentation performance and area under the ROC curve (AUC), F1-score and recall for classification performance. The ICH and MPH datasets had a median age of 45 (IQR 35-60) and 48 (IQR 38-57) years old and consisted of 23.1% and 31.5% malignant cases, respectively. The best segmentation model achieved a DICE score of 0.85 ± 0.01, 0.88 ± 0.01 and 0.85 ± 0.01 in the ICH training, ICH validation and MPH test sets. The best classification model achieved a recall of 1.00 and F1-score of 0.88 (AUC:0.93), 0.94 (AUC:0.89) and 0.83 (AUC:0.90) in the ICH training, ICH validation and MPH test sets, respectively. We have developed an end-to-end radiomics-based model capable of adnexal mass segmentation and classification, with a comparable predictive performance (AUC 0.90) to the published performance of expert subjective assessment (gold standard), and current risk models. Further prospective evaluation of the classification performance of this ML model against existing methods is required.
Collapse
Affiliation(s)
- Jennifer F Barcroft
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Chiara Landolfo
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Maya Al-Memar
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Nina Parker
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Chris Kyriacou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Maria Munaretto
- Department of Obstetrics and Gynaecology, Ospedale Morgagni-Pierantoni, Forli, Italy
| | - Martina Fantauzzi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Nina Cooper
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Joseph Yazbek
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
| | - Nishat Bharwani
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Sa Ra Lee
- Department of Obstetrics and Gynaecology, Asan Medical Center, Seoul, South Korea
| | - Ju Hee Kim
- Department of Obstetrics and Gynaecology, Asan Medical Center, Seoul, South Korea
| | - Dirk Timmerman
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Joram Posma
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Luca Savelli
- Department of Obstetrics and Gynaecology, Ospedale Morgagni-Pierantoni, Forli, Italy
| | - Srdjan Saso
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Tom Bourne
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, Imperial College Healthcare NHS Trust, London, UK
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|