1
|
Hooshangnejad H, Huang G, Kelly K, Feng X, Luo Y, Zhang R, Xu Z, Chen Q, Ding K. EXACT-Net: Framework for EHR-Guided Lung Tumor Auto-Segmentation for Non-Small Cell Lung Cancer Radiotherapy. Cancers (Basel) 2024; 16:4097. [PMID: 39682283 DOI: 10.3390/cancers16234097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Lung cancer is a devastating disease with the highest mortality rate among cancer types. Over 60% of non-small cell lung cancer (NSCLC) patients, accounting for 87% of lung cancer diagnoses, require radiation therapy. Rapid treatment initiation significantly increases the patient's survival rate and reduces the mortality rate. Accurate tumor segmentation is a critical step in diagnosing and treating NSCLC. Manual segmentation is time- and labor-consuming and causes delays in treatment initiation. Although many lung nodule detection methods, including deep learning-based models, have been proposed. Most of these methods still have a long-standing problem of high false positives (FPs). METHODS Here, we developed an electronic health record (EHR)-guided lung tumor auto-segmentation called EXACT-Net (EHR-enhanced eXACtitude in Tumor segmentation), where the extracted information from EHRs using a pre-trained large language model (LLM) was used to remove the FPs and keep the TP nodules only. RESULTS The auto-segmentation model was trained on NSCLC patients' computed tomography (CT), and the pre-trained LLM was used with the zero-shot learning approach. Our approach resulted in a 250% boost in successful nodule detection using the data from ten NSCLC patients treated in our institution. CONCLUSIONS We demonstrated that combining vision-language information in EXACT-Net multi-modal AI framework greatly enhances the performance of vision only models, paving the road to multimodal AI framework for medical image processing.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Katelyn Kelly
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xue Feng
- Carina Medical, Lexington, KY 40509, USA
| | - Yi Luo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rui Zhang
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ziyue Xu
- NVIDIA Corp., AI Infrastructure, Santa Clara, CA 95050, USA
| | - Quan Chen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Li X, Bellotti R, Bachtiary B, Hrbacek J, Weber DC, Lomax AJ, Buhmann JM, Zhang Y. A unified generation-registration framework for improved MR-based CT synthesis in proton therapy. Med Phys 2024; 51:8302-8316. [PMID: 39137294 DOI: 10.1002/mp.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The use of magnetic resonance (MR) imaging for proton therapy treatment planning is gaining attention as a highly effective method for guidance. At the core of this approach is the generation of computed tomography (CT) images from MR scans. However, the critical issue in this process is accurately aligning the MR and CT images, a task that becomes particularly challenging in frequently moving body areas, such as the head-and-neck. Misalignments in these images can result in blurred synthetic CT (sCT) images, adversely affecting the precision and effectiveness of the treatment planning. PURPOSE This study introduces a novel network that cohesively unifies image generation and registration processes to enhance the quality and anatomical fidelity of sCTs derived from better-aligned MR images. METHODS The approach synergizes a generation network (G) with a deformable registration network (R), optimizing them jointly in MR-to-CT synthesis. This goal is achieved by alternately minimizing the discrepancies between the generated/registered CT images and their corresponding reference CT counterparts. The generation network employs a UNet architecture, while the registration network leverages an implicit neural representation (INR) of the displacement vector fields (DVFs). We validated this method on a dataset comprising 60 head-and-neck patients, reserving 12 cases for holdout testing. RESULTS Compared to the baseline Pix2Pix method with MAE 124.95 ± $\pm$ 30.74 HU, the proposed technique demonstrated 80.98 ± $\pm$ 7.55 HU. The unified translation-registration network produced sharper and more anatomically congruent outputs, showing superior efficacy in converting MR images to sCTs. Additionally, from a dosimetric perspective, the plan recalculated on the resulting sCTs resulted in a remarkably reduced discrepancy to the reference proton plans. CONCLUSIONS This study conclusively demonstrates that a holistic MR-based CT synthesis approach, integrating both image-to-image translation and deformable registration, significantly improves the precision and quality of sCT generation, particularly for the challenging body area with varied anatomic changes between corresponding MR and CT.
Collapse
Affiliation(s)
- Xia Li
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Renato Bellotti
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | - Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Jan Hrbacek
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, Zürich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
3
|
Xie H, Zhang H, Chen Z, Tan T. Precision dose prediction for breast cancer patients undergoing IMRT: The Swin-UMamba-Channel Model. Comput Med Imaging Graph 2024; 116:102409. [PMID: 38878631 DOI: 10.1016/j.compmedimag.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 09/02/2024]
Abstract
BACKGROUND Radiation therapy is one of the crucial treatment modalities for cancer. An excellent radiation therapy plan relies heavily on an outstanding dose distribution map, which is traditionally generated through repeated trials and adjustments by experienced physicists. However, this process is both time-consuming and labor-intensive, and it comes with a degree of subjectivity. Now, with the powerful capabilities of deep learning, we are able to predict dose distribution maps more accurately, effectively overcoming these challenges. METHODS In this study, we propose a novel Swin-UMamba-Channel prediction model specifically designed for predicting the dose distribution of patients with left breast cancer undergoing radiotherapy after total mastectomy. This model integrates anatomical position information of organs and ray angle information, significantly enhancing prediction accuracy. Through iterative training of the generator (Swin-UMamba) and discriminator, the model can generate images that closely match the actual dose, assisting physicists in quickly creating DVH curves and shortening the treatment planning cycle. Our model exhibits excellent performance in terms of prediction accuracy, computational efficiency, and practicality, and its effectiveness has been further verified through comparative experiments with similar networks. RESULTS The results of the study indicate that our model can accurately predict the clinical dose of breast cancer patients undergoing intensity-modulated radiation therapy (IMRT). The predicted dose range is from 0 to 50 Gy, and compared with actual data, it shows a high accuracy with an average Dice similarity coefficient of 0.86. Specifically, the average dose change rate for the planning target volume ranges from 0.28 % to 1.515 %, while the average dose change rates for the right and left lungs are 2.113 % and 0.508 %, respectively. Notably, due to their small sizes, the heart and spinal cord exhibit relatively higher average dose change rates, reaching 3.208 % and 1.490 %, respectively. In comparison with similar dose studies, our model demonstrates superior performance. Additionally, our model possesses fewer parameters, lower computational complexity, and shorter processing time, further enhancing its practicality and efficiency. These findings provide strong evidence for the accuracy and reliability of our model in predicting doses, offering significant technical support for IMRT in breast cancer patients. CONCLUSION This study presents a novel Swin-UMamba-Channel dose prediction model, and its results demonstrate its precise prediction of clinical doses for the target area of left breast cancer patients undergoing total mastectomy and IMRT. These remarkable achievements provide valuable reference data for subsequent plan optimization and quality control, paving a new path for the application of deep learning in the field of radiation therapy.
Collapse
Affiliation(s)
- Hui Xie
- Faulty of Applied Sciences, Macao Polytechnic University, Macao 999078, PR China; Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou 423000, PR China
| | - Hua Zhang
- Beijing Linking Med Technology Co., Ltd, No.9, Fenghaodong 2C-5, Haidian, Beijing 100089, PR China
| | - Zijie Chen
- Shenying Medical Technology (Shenzhen) Co., Ltd, Shenzhen 518057, PR China
| | - Tao Tan
- Faulty of Applied Sciences, Macao Polytechnic University, Macao 999078, PR China.
| |
Collapse
|
4
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Patel H, Zanos T, Hewitt DB. Deep Learning Applications in Pancreatic Cancer. Cancers (Basel) 2024; 16:436. [PMID: 38275877 PMCID: PMC10814475 DOI: 10.3390/cancers16020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Pancreatic cancer is one of the most lethal gastrointestinal malignancies. Despite advances in cross-sectional imaging, chemotherapy, radiation therapy, and surgical techniques, the 5-year overall survival is only 12%. With the advent and rapid adoption of AI across all industries, we present a review of applications of DL in the care of patients diagnosed with PC. A review of different DL techniques with applications across diagnosis, management, and monitoring is presented across the different pathological subtypes of pancreatic cancer. This systematic review highlights AI as an emerging technology in the care of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hardik Patel
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - Theodoros Zanos
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - D. Brock Hewitt
- Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
6
|
Hooshangnejad H, Miles D, Hill C, Narang A, Ding K, Han-Oh S. Inter-Breath-Hold Geometric and Dosimetric Variations in Organs at Risk during Pancreatic Stereotactic Body Radiotherapy: Implications for Adaptive Radiation Therapy. Cancers (Basel) 2023; 15:4332. [PMID: 37686608 PMCID: PMC10486406 DOI: 10.3390/cancers15174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death, with nearly 60,000 cases each year and less than a 10% 5-year overall survival rate. Radiation therapy (RT) is highly beneficial as a local-regional anticancer treatment. As anatomical variation is of great concern, motion management techniques, such as DIBH, are commonly used to minimize OARs toxicities; however, the variability between DIBHs has not been well studied. Here, we present an unprecedented systematic analysis of patients' anatomical reproducibility over multiple DIBH motion-management technique uses for pancreatic cancer RT. We used data from 20 patients; four DIBH scans were available for each patient to design 80 SBRT plans. Our results demonstrated that (i) there is considerable variation in OAR geometry and dose between same-subject DIBH scans; (ii) the RT plan designed for one scan may not be directly applicable to another scan; (iii) the RT treatment designed using a DIBH simulation CT results in different dosimetry in the DIBH treatment delivery; and (iv) this confirms the importance of adaptive radiation therapy (ART), such as MR-Linacs, for pancreatic RT delivery. The ART treatment delivery technique can account for anatomical variation between referenced and scheduled plans, and thus avoid toxicities of OARs because of anatomical variations between DIBH patient setups.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Colin Hill
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; (D.M.); (C.H.); (A.N.); (K.D.)
| |
Collapse
|
7
|
Hooshangnejad H, Chen Q, Feng X, Zhang R, Farjam R, Voong KR, Hales RK, Du Y, Jia X, Ding K. DAART: a deep learning platform for deeply accelerated adaptive radiation therapy for lung cancer. Front Oncol 2023; 13:1201679. [PMID: 37483512 PMCID: PMC10359160 DOI: 10.3389/fonc.2023.1201679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose The study aimed to implement a novel, deeply accelerated adaptive radiation therapy (DAART) approach for lung cancer radiotherapy (RT). Lung cancer is the most common cause of cancer-related death, and RT is the preferred medically inoperable treatment for early stage non-small cell lung cancer (NSCLC). In the current lengthy workflow, it takes a median of four weeks from diagnosis to RT treatment, which can result in complete restaging and loss of local control with delay. We implemented the DAART approach, featuring a novel deepPERFECT system, to address unwanted delays between diagnosis and treatment initiation. Materials and methods We developed a deepPERFECT to adapt the initial diagnostic imaging to the treatment setup to allow initial RT planning and verification. We used data from 15 patients with NSCLC treated with RT to train the model and test its performance. We conducted a virtual clinical trial to evaluate the treatment quality of the proposed DAART for lung cancer radiotherapy. Results We found that deepPERFECT predicts planning CT with a mean high-intensity fidelity of 83 and 14 HU for the body and lungs, respectively. The shape of the body and lungs on the synthesized CT was highly conformal, with a dice similarity coefficient (DSC) of 0.91, 0.97, and Hausdorff distance (HD) of 7.9 mm, and 4.9 mm, respectively, compared with the planning CT scan. The tumor showed less conformality, which warrants acquisition of treatment Day1 CT and online adaptive RT. An initial plan was designed on synthesized CT and then adapted to treatment Day1 CT using the adapt to position (ATP) and adapt to shape (ATS) method. Non-inferior plan quality was achieved by the ATP scenario, while all ATS-adapted plans showed good plan quality. Conclusion DAART reduces the common online ART (ART) treatment course by at least two weeks, resulting in a 50% shorter time to treatment to lower the chance of restaging and loss of local control.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Carnegie Center of Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Quan Chen
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Xue Feng
- Carina Medical, Lexington, KY, United States
| | - Rui Zhang
- Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Reza Farjam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Khinh Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Russell K. Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yong Du
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Carnegie Center of Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Huang X, Hooshangnejad H, China D, Feng Z, Lee J, Bell MAL, Ding K. Ultrasound Imaging with Flexible Array Transducer for Pancreatic Cancer Radiation Therapy. Cancers (Basel) 2023; 15:3294. [PMID: 37444403 DOI: 10.3390/cancers15133294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic cancer with less than 10% 3-year survival rate is one of deadliest cancer types and greatly benefits from enhanced radiotherapy. Organ motion monitoring helps spare the normal tissue from high radiation and, in turn, enables the dose escalation to the target that has been shown to improve the effectiveness of RT by doubling and tripling post-RT survival rate. The flexible array transducer is a novel and promising solution to address the limitation of conventional US probes. We proposed a novel shape estimation for flexible array transducer using two sequential algorithms: (i) an optical tracking-based system that uses the optical markers coordinates attached to the probe at specific positions to estimate the array shape in real-time and (ii) a fully automatic shape optimization algorithm that automatically searches for the optimal array shape that results in the highest quality reconstructed image. We conducted phantom and in vivo experiments to evaluate the estimated array shapes and the accuracy of reconstructed US images. The proposed method reconstructed US images with low full-width-at-half-maximum (FWHM) of the point scatters, correct aspect ratio of the cyst, and high-matching score with the ground truth. Our results demonstrated that the proposed methods reconstruct high-quality ultrasound images with significantly less defocusing and distortion compared with those without any correction. Specifically, the automatic optimization method reduced the array shape estimation error to less than half-wavelength of transmitted wave, resulting in a high-quality reconstructed image.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Debarghya China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ziwei Feng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Muyinatu A Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|