1
|
Ma Y, Jia B, He XJ, Cai YX, Chen JY, Zhong JX. Orbital and sinus rhabdomyosarcoma with concurrent central retinal artery occlusion: A case report. World J Clin Oncol 2024; 15:1507-1513. [DOI: 10.5306/wjco.v15.i12.1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Both rhabdomyosarcoma (RMS) and central retinal artery occlusion (CRAO) are rare medical diseases, and their simultaneous occurrence in the same patient is extraordinarily uncommon. This study presents a comprehensive overview of the clinical manifestations, diagnostic imaging results, and therapeutic interventions of a patient with both conditions.
CASE SUMMARY In this report, we present a 30-year-old male who presented with significant protrusion, pain and vision loss and was diagnosed with RMS in the orbit and sinus with CRAO. Following resection of the sinus and orbital mass and enucleation of the right eye, the patient experienced symptom improvement.
CONCLUSION This article provides an in-depth analysis of the patient’s clinical manifestations, the tumor’s anatomical origin, and the etiology of CRAO. The concurrent manifestation of both RMS and CRAO is exceedingly uncommon in clinical practice.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bo Jia
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xiao-Juan He
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yue-Xia Cai
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jin-Ying Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, The Sixth Affiliated Hospital of Jinan University, Dongguan 523000, Guangdong Province, China
| |
Collapse
|
2
|
Mafi S, Dehghani M, Khalvati B, Abidi H, Ghorbani M, Jalali P, Whichelo R, Salehi Z, Markowska A, Reyes A, Pecic S, Łos MJ, Ghavami S, Nikseresht M. Targeting PERK and GRP78 in colorectal cancer: Genetic insights and novel therapeutic approaches. Eur J Pharmacol 2024; 982:176899. [PMID: 39153651 DOI: 10.1016/j.ejphar.2024.176899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Colorectal cancer (CRC) ranks among the leading causes of cancer-related deaths worldwide. Enhancing CRC diagnosis and prognosis requires the development of improved biomarkers and therapeutic targets. Emerging evidence suggests that the unfolded protein response (UPR) plays a pivotal role in CRC progression, presenting new opportunities for diagnosis, treatment, and prevention. This study hypothesizes that genetic variants in endoplasmic reticulum (ER) stress response genes influence CRC susceptibility. We examined the frequencies of SNPs in PERK (rs13045) and GRP78/BiP (rs430397) within a South Iranian cohort. We mapped the cellular and molecular features of PERK and GRP78 genes in colorectal cancer, observing their differential expressions in tumor and metastatic tissues. We constructed co-expression and protein-protein interaction networks and performed gene set enrichment analysis, highlighting autophagy as a significant pathway through KEGG. Furthermore, the study included 64 CRC patients and 60 control subjects. DNA extraction and genotyping were conducted using high-resolution melting (HRM) analysis. Significant differences in PERK and GRP78 expressions were observed between CRC tissues and controls. Variations in PERK and GRP78 genotypes were significantly correlated with CRC risk. Utilizing a Multi-Target Directed Ligands approach, a dual PERK/GRP78 inhibitor was designed and subjected to molecular modeling studies. Docking experiments indicated high-affinity binding between the proposed inhibitor and both genes, PERK and GRP78, suggesting a novel therapy for CRC. These findings highlight the importance of understanding genetic backgrounds in different populations to assess CRC risk. Polymorphisms in UPR signaling pathway elements may serve as potential markers for predicting CRC susceptibility, paving the way for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Mafi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Dehghani
- Hematology and Medical Oncology Department, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marziyeh Ghorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rachel Whichelo
- College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aleksandra Markowska
- Faculty of Health Sciences, Medical University of Warsaw, 03-242, Warsaw, Poland
| | - Amanda Reyes
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, 92834, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, 92834, United States
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland; Linkocare LifeSciences AB, Linkoping, Sweden
| | - Saeid Ghavami
- Faculty of Medicine, Rolna 43, Katowice, Poland; Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada; Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Mohsen Nikseresht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
3
|
Fascì A, Deaglio S. Role of CD73 and the purinergic signaling pathway in the pathogenesis of fusion-negative rhabdomyosarcoma. Purinergic Signal 2024; 20:469-471. [PMID: 38700722 PMCID: PMC11377370 DOI: 10.1007/s11302-024-10013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
- Amelia Fascì
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, via Nizza 52, Turin, 10126, Italy.
| | - Silvia Deaglio
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
4
|
Bahlinger V, Stoehr R, Hartmann A, Hes O, Agaimy A. Small cell neuroendocrine carcinoma and poorly differentiated rhabdomyosarcomas of the urinary bladder in adults-A comparative analysis in favor of a common histogenesis. Virchows Arch 2024; 485:615-623. [PMID: 38833173 DOI: 10.1007/s00428-024-03835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Rhabdomyosarcoma (RMS) of the urinary bladder in adults and elderly is an exceptionally rare neoplasm that displays poorly differentiated solid (alveolar-like) small cell pattern, frequently indistinguishable from small cell neuroendocrine carcinoma (SCNEC). However, the histogenesis of RMS and SCNEC and their inter-relationship have not been well studied and remained controversial. We herein analyzed 23 SCNEC and 3 small round cell RMS of the bladder for neuroendocrine (synaptophysin + chromogranin A) and myogenic (desmin + myogenin) marker expression and for TERT promoter mutations. In addition, the RMS cohort and one SCNEC that was revised to RMS were tested for gene fusions using targeted RNA sequencing (TruSight Illumina Panel which includes FOXO1 and most of RMS-related other genes). Overall, significant expression of myogenin and desmin was observed in one of 23 original SCNEC justifying a revised diagnosis to RMS. On the other hand, diffuse expression of synaptophysin was noted in 2 of the 4 RMS, but chromogranin A was not expressed in 3 RMS tested. TERT promoter mutations were detected in 15 of 22 (68%) SCNEC and in two of three (67%) assessable RMS cases, respectively. None of the four RMS cases had gene fusions. Our data highlights phenotypic and genetic overlap between SCNEC and RMS of the urinary bladder. High frequency of TERT promoter mutations in SCNEC is in line with their presumable urothelial origin. In addition, the presence of TERT promoter mutation in 2 of 3 RMS and lack of FOXO1 and other gene fusions in all 4 RMSs suggest a mucosal (urothelial) origin, probably representing extensive monomorphic rhabdomyoblastic transdifferentiation in SCNEC.
Collapse
Affiliation(s)
- Veronika Bahlinger
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen (UKER), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tubingen, Tubingen, Germany
| | - Robert Stoehr
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen (UKER), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen (UKER), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Ondřej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Plzen, Czech Republic
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen (UKER), Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| |
Collapse
|
5
|
Kalita B, Martinez-Cebrian G, McEvoy J, Allensworth M, Knight M, Magli A, Perlingeiro RCR, Dyer MA, Stewart E, Dynlacht BD. PAX fusion proteins deregulate gene networks controlling mitochondrial translation in pediatric rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606039. [PMID: 39211084 PMCID: PMC11360909 DOI: 10.1101/2024.07.31.606039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alveolar rhabdomyosarcoma (ARMS) patients harboring PAX3-FOXO1 and PAX7-FOXO1 fusion proteins exhibit a greater incidence of tumor relapse, metastasis, and poor survival outcome, thereby underscoring the urgent need to develop effective therapies to treat this subtype of childhood cancer. To uncover mechanisms that contribute to tumor initiation, we developed a novel muscle progenitor model and used epigenomic approaches to unravel genome re-wiring events mediated by PAX3/7 fusion proteins. Importantly, these regulatory mechanisms are conserved across established ARMS cell lines, primary tumors, and orthotopic-patient derived xenografts. Among the key targets of PAX3- and PAX7-fusion proteins, we identified a cohort of oncogenes, FGF receptors, and genes essential for mitochondrial metabolism and protein translation, which we successfully targeted in preclinical trials. Our data suggest an explanation for the relative paucity of recurring mutations in this tumor, provide a compelling list of actionable targets, and suggest promising new strategies to treat this tumor.
Collapse
|
6
|
Duan C, He S, Ma X, Wang S, Jin M, Zhao W, Wang X, Liu Z, Yu T, He L, Wang X, Ni X, Su Y. Clinical outcomes and prognostic factors of parameningeal rhabdomyosarcoma in children and adolescents: results of two consecutive protocols. Transl Pediatr 2024; 13:1086-1096. [PMID: 39144439 PMCID: PMC11320008 DOI: 10.21037/tp-24-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024] Open
Abstract
Background Parameningeal rhabdomyosarcoma (PM-RMS) accounts for about 20% of all rhabdomyosarcoma (RMS) cases. At present, most research on PM-RMS has been conducted in Europe and the United States of America, and research in China has been very limited. This study sought to analyze the clinical outcomes and prognostic factors of PM-RMS in children and adolescents from two consecutive protocols at Beijing Children's Hospital (BCH). Methods A total of 80 patients aged up to 18 years with previously untreated PM-RMS who had received treatment under two consecutive protocols [i.e., either the BCH-RMS-2006 protocol or the Chinese Children Cancer Group (CCCG)-RMS-2016 protocol] were included in the statistical analysis. The Kaplan-Meier method was used for the survival analysis, and Cox regression was used for the univariate and multivariate analyses. Results Of the 80 patients enrolled in the study, 69 (86.2%) had meningeal invasion (MI). Of these 69 MI patients, 18 (22.5%) had cranial nerve palsy (CNP), 64 (80.0%) had cranial base bone erosion (CBBE), 25 (31.3%) had intracranial extension (ICE), and 2 (2.5%) had positive cerebrospinal fluid (CSF) tumor cells. The median follow-up time was 20.5 months (range, 5-100 months). The 5-year overall survival (OS) and progression-free survival (PFS) rates for the entire cohort were 51.7% and 45.6%, respectively. The 5-year OS rates of the patients who received the BCH-RMS-2006 protocol (18/80, 22.5%) and the CCCG-RMS-2016 protocol (62/80, 77.5%) were 33.3% and 57.0%, respectively (P<0.05), while the PFS rates of these patients were 22.2% and 53.6%, respectively (P<0.05). In relation to the PM-RMS patients with MI, the 5-year OS rates were 21.4% and 52.7%, and the 5-year PFS rates were 14.3% and 51.1% for the patients who received the old and new regimens, respectively (P<0.05). The extent of surgical resection had no significant effect on survival. The multivariate analysis showed that the coexistence of CBBE and ICE, no radiotherapy, a poor response to induction chemotherapy, and the BCH-RMS-2006 protocol were risk factors affecting PFS and OS. Conclusions Of the patients examined in this study, those with PM-RMS with CBBE accompanied by ICE had the worst prognosis. The patients with MI benefited from intensive chemotherapy combined with radiation therapy, but the effect of surgery was very limited.
Collapse
Affiliation(s)
- Chao Duan
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Sidou He
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xiaoli Ma
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Shengcai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Mei Jin
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Wen Zhao
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xisi Wang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Yu
- Department of Radiology, Imaging Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lejian He
- Department of Pathology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiaoman Wang
- Department of Ultrasound, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xin Ni
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yan Su
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Sezen S, Adiguzel S, Zarepour A, Khosravi A, Gordon JW, Ghavami S, Zarrabi A. Assessment of Stiffness-Dependent Autophagosome Formation and Apoptosis in Embryonal Rhabdomyosarcoma Tumor Cells. Methods Mol Biol 2024. [PMID: 38647864 DOI: 10.1007/7651_2024_538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Remodeling of the extracellular matrix (ECM) eventually causes the stiffening of tumors and changes to the microenvironment. The stiffening alters the biological processes in cancer cells due to altered signaling through cell surface receptors. Autophagy, a key catabolic process in normal and cancer cells, is thought to be involved in mechano-transduction and the level of autophagy is probably stiffness-dependent. Here, we provide a methodology to study the effect of matrix stiffness on autophagy in embryonal rhabdomyosarcoma cells. To mimic stiffness, we seeded cells on GelMA hydrogel matrices with defined stiffness and evaluated autophagy-related endpoints. We also evaluated autophagy-dependent pathways, apoptosis, and cell viability. Specifically, we utilized immunocytochemistry and confocal microscopy to track autophagosome formation through LC3 lipidation. This approach suggests that the use of GelMA hydrogels with defined stiffness represents a novel method to evaluate the role of autophagy in embryonal rhabdomyosarcoma and other cancer cells.
Collapse
Affiliation(s)
- Serap Sezen
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Türkiye
- Nanotechnology Research and Application Center, Sabanci University, Tuzla, Istanbul, Türkiye
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center, Sabanci University, Tuzla, Istanbul, Türkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Türkiye
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Knoedler L, Huelsboemer L, Hollmann K, Alfertshofer M, Herfeld K, Hosseini H, Boroumand S, Stoegner VA, Safi AF, Perl M, Knoedler S, Pomahac B, Kauke-Navarro M. From standard therapies to monoclonal antibodies and immune checkpoint inhibitors - an update for reconstructive surgeons on common oncological cases. Front Immunol 2024; 15:1276306. [PMID: 38715609 PMCID: PMC11074450 DOI: 10.3389/fimmu.2024.1276306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024] Open
Abstract
Malignancies represent a persisting worldwide health burden. Tumor treatment is commonly based on surgical and/or non-surgical therapies. In the recent decade, novel non-surgical treatment strategies involving monoclonal antibodies (mAB) and immune checkpoint inhibitors (ICI) have been successfully incorporated into standard treatment algorithms. Such emerging therapy concepts have demonstrated improved complete remission rates and prolonged progression-free survival compared to conventional chemotherapies. However, the in-toto surgical tumor resection followed by reconstructive surgery oftentimes remains the only curative therapy. Breast cancer (BC), skin cancer (SC), head and neck cancer (HNC), and sarcoma amongst other cancer entities commonly require reconstructive surgery to restore form, aesthetics, and functionality. Understanding the basic principles, strengths, and limitations of mAB and ICI as (neo-) adjuvant therapies and treatment alternatives for resectable or unresectable tumors is paramount for optimized surgical therapy planning. Yet, there is a scarcity of studies that condense the current body of literature on mAB and ICI for BC, SC, HNC, and sarcoma. This knowledge gap may result in suboptimal treatment planning, ultimately impairing patient outcomes. Herein, we aim to summarize the current translational endeavors focusing on mAB and ICI. This line of research may serve as an evidence-based fundament to guide targeted therapy and optimize interdisciplinary anti-cancer strategies.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Katharina Hollmann
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Faculty of Medicine, University of Wuerzbuerg, Wuerzburg, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Konstantin Herfeld
- Department of Internal Medicine III (Oncology and Haematology), University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Helia Hosseini
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Sam Boroumand
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Markus Perl
- Department of Internal Medicine III (Oncology and Haematology), University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Samuel Knoedler
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
10
|
Martynov I, Dhaka L, Wilke B, Hoyer P, Vahdad MR, Seitz G. Contemporary preclinical mouse models for pediatric rhabdomyosarcoma: from bedside to bench to bedside. Front Oncol 2024; 14:1333129. [PMID: 38371622 PMCID: PMC10869630 DOI: 10.3389/fonc.2024.1333129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignancy, characterized by high clinicalopathological and molecular heterogeneity. Preclinical in vivo models are essential for advancing our understanding of RMS oncobiology and developing novel treatment strategies. However, the diversity of scholarly data on preclinical RMS studies may challenge scientists and clinicians. Hence, we performed a systematic literature survey of contemporary RMS mouse models to characterize their phenotypes and assess their translational relevance. Methods We identified papers published between 01/07/2018 and 01/07/2023 by searching PubMed and Web of Science databases. Results Out of 713 records screened, 118 studies (26.9%) were included in the qualitative synthesis. Cell line-derived xenografts (CDX) were the most commonly utilized (n = 75, 63.6%), followed by patient-derived xenografts (PDX) and syngeneic models, each accounting for 11.9% (n = 14), and genetically engineered mouse models (GEMM) (n = 7, 5.9%). Combinations of different model categories were reported in 5.9% (n = 7) of studies. One study employed a virus-induced RMS model. Overall, 40.0% (n = 30) of the studies utilizing CDX models established alveolar RMS (aRMS), while 38.7% (n = 29) were embryonal phenotypes (eRMS). There were 20.0% (n = 15) of studies that involved a combination of both aRMS and eRMS subtypes. In one study (1.3%), the RMS phenotype was spindle cell/sclerosing. Subcutaneous xenografts (n = 66, 55.9%) were more frequently used compared to orthotopic models (n = 29, 24.6%). Notably, none of the employed cell lines were derived from primary untreated tumors. Only a minority of studies investigated disseminated RMS phenotypes (n = 16, 13.6%). The utilization areas of RMS models included testing drugs (n = 64, 54.2%), studying tumorigenesis (n = 56, 47.5%), tumor modeling (n = 19, 16.1%), imaging (n = 9, 7.6%), radiotherapy (n = 6, 5.1%), long-term effects related to radiotherapy (n = 3, 2.5%), and investigating biomarkers (n = 1, 0.8%). Notably, no preclinical studies focused on surgery. Conclusions This up-to-date review highlights the need for mouse models with dissemination phenotypes and cell lines from primary untreated tumors. Furthermore, efforts should be directed towards underexplored areas such as surgery, radiotherapy, and biomarkers.
Collapse
Affiliation(s)
- Illya Martynov
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Lajwanti Dhaka
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Benedikt Wilke
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - Paul Hoyer
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
| | - M. Reza Vahdad
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Hospital Giessen-Marburg, Marburg, Germany
- Department of Pediatric Surgery, University Hospital Giessen-Marburg, Giessen, Germany
| |
Collapse
|
11
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|