1
|
Shah M, Hussain M, Woo HG. Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. Genomics Inform 2025; 23:1. [PMID: 39833954 DOI: 10.1186/s44342-024-00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer and remains a leading cause of cancer-related deaths worldwide. While traditional approaches like surgical resection and tyrosine kinase inhibitors struggle against the tumor's immune evasion, monoclonal antibody (mAb)-based immunotherapies have emerged as promising alternatives. Several therapeutic antibodies that counter the immunosuppressive tumor microenvironment have demonstrated efficacy in clinical trials, leading to FDA approvals for advanced HCC treatment. A crucial aspect of advancing these therapies lies in understanding the structural interactions between antibodies and their targets. Recent findings indicate that mAbs and bispecific antibodies (bsAbs) can target different, non-overlapping epitopes on immune checkpoints such as PD-1 and CTLA-4. This review delves into the epitope-paratope interactions of structurally unresolved mAbs and bsAbs, and discusses the potential for combination therapies based on their non-overlapping epitopes. By leveraging this unique feature, combination therapies could enhance immune activation, reduce resistance, and improve overall efficacy, marking a new direction for antibody-based immunotherapy in HCC.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Hussain
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, 16499, Republic of Korea.
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Feng L, Huang W, Pan X, Ruan F, Li X, Tan S, Long L. Predicting overall survival in hepatocellular carcinoma patients via a combined MRI radiomics and pathomics signature. Transl Oncol 2025; 51:102174. [PMID: 39489092 PMCID: PMC11565553 DOI: 10.1016/j.tranon.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study aims to develop and validate a radiopathomics model that integrates radiomic and pathomic features to predict overall survival (OS) in hepatocellular carcinoma (HCC) patients. MATERIALS AND METHODS This study involved 126 HCC patients who underwent hepatectomy and were followed for more than 5 years. Radiomic features were extracted from arterial-phase (AP) and portal venous-phase (PVP) MRI scans, whereas pathomic features were obtained from whole-slide images (WSIs) of the HCC patients. Using LASSO Cox regression, both radiomics and pathomics signatures were established. A combined radiopathomics nomogram for predicting OS was constructed and validated. The correlation between the radiopathomics nomogram and OS prediction was evaluated, demonstrating its potential clinical utility in prognosis assessment. RESULTS We selected four radiomic features from the AP and PVP MRI scans to construct a signature, achieving a concordance index (C-index) of 0.739 in the training cohort and 0.724 in the validation cohort; these results indicate favourable 5-year OS prediction. Similarly, from 1,141 pathomics features extracted from WSIs, 15 were chosen for a pathomics signature, which had C-indexes of 0.821 and 0.808 in the training and validation cohorts, respectively. The most robust performance was delivered by a radiopathomics nomogram, with C-index values of 0.840 in the training cohort and 0.875 in the validation cohort. Decision curve analysis (DCA) confirmed the highest net benefit achievable by the combined radiopathomics nomogram. CONCLUSION Our findings indicate that the radiopathomics nomogram can serve as a predictive marker for hepatectomy prognosis in HCC patients and has the potential to enhance personalized therapeutic approaches.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Wanyun Huang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Xiaoyu Pan
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Fengqiu Ruan
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Xuan Li
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Siyuan Tan
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, PR China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
3
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
4
|
Lau G, Obi S, Zhou J, Tateishi R, Qin S, Zhao H, Otsuka M, Ogasawara S, George J, Chow PKH, Cai J, Shiina S, Kato N, Yokosuka O, Oura K, Yau T, Chan SL, Kuang M, Ueno Y, Chen M, Cheng AL, Cheng G, Chuang WL, Baatarkhuu O, Bi F, Dan YY, Gani RA, Tanaka A, Jafri W, Jia JD, Kao JH, Hasegawa K, Lau P, Lee JM, Liang J, Liu Z, Lu Y, Pan H, Payawal DA, Rahman S, Seong J, Shen F, Shiha G, Song T, Sun HC, Masaki T, Sirachainan E, Wei L, Yang JM, Sallano JD, Zhang Y, Tanwandee T, Dokmeci AK, Zheng SS, Fan J, Fan ST, Sarin SK, Omata M. APASL clinical practice guidelines on systemic therapy for hepatocellular carcinoma-2024. Hepatol Int 2024; 18:1661-1683. [PMID: 39570557 DOI: 10.1007/s12072-024-10732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024]
Abstract
In Asia-Pacific region, hepatocellular carcinoma is a serious health threat attributing to over 600,000 deaths each year and account for over 70% of global cases. Clinically, the major unmet needs are recurrence after curative-intent surgery, liver transplantation or local ablation and disease progression in those with hepatocellular carcinoma not eligible for resection or failed locoregional therapy. In the recent few years, new targeted therapy and immune-checkpoint inhibitors have been registered as systemic therapy to address these issues. Notably, new forms of systemic therapy, either as first-line or second-line therapy for unresectable hepatocellular or those not eligible for locoregional therapy, are now available. New data is also emerging with the use of systemic therapy to prevent hepatocellular carcinoma recurrence after curative-intent resection or local ablation therapy and to retard disease progression after locoregional therapy. In the future, further implementation of immune-checkpoint inhibitors and other forms of immunotherapy are expected to bring a new paradigm to the management of hepatocellular carcinoma. New insight related to immune-related adverse events with the use of immunotherapy has allso enabled optimization of the therapeutic approach to patients with hepatocellular carcinoma. The purpose of this clinical practice guideline is to provide an up-to-date recommendation based on clinical evidence and experience from expert Asia-Pacific key opinion leaders in the field of hepatocellular carcinoma. Three key questions will be addressed, namely: (1) Which patients with hepatocellular carcinoma should be considered for systemic therapy? (2) Which systemic therapy should be used? (3) How should a patient planned for immune checkpoint-based systemic therapy be managed and monitored?
Collapse
Affiliation(s)
- George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Zhongshan Hospital, Fudan University, Hong Kong SAR, Shanghai, China.
| | - Shuntaro Obi
- Department of Internal Medicine, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai Key Laboratory of Organ Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shukui Qin
- Cancer Centre of Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Pierce K H Chow
- Department of HPB Surgery and Transplantation, Duke-NUS Medical School, National Cancer Center Singapore and Singapore General Hospital, Surgery Academic Clinical Program, Singapore, Singapore
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Naoya Kato
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Kita, Miki, Kagawa, 761-0793, Japan
| | - Thomas Yau
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yoshiyuki Ueno
- Faculty of Medicine, Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Minshan Chen
- Department of Liver Surgery, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ann-Lii Cheng
- Department of OncologyDepartment of Medical OncologyGraduate Institute of OncologyDepartment of Internal Medicine, National Taiwan University Cancer CenterNational Taiwan University HospitalNational Taiwan University College of Medicine, Taipei, Taiwan
| | - Gregory Cheng
- Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong SAR, China
- Faculty of Health Science, Macau University, Macau SAR, China
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, and Hepatitis Center, Center for Infectious Disease and Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Oidov Baatarkhuu
- School of Medicine, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Feng Bi
- Department of Medical Oncology, Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Rino A Gani
- Hepatobiliary Division, Staff Medic Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Wasim Jafri
- The Aga Khan University Hospital, Karachi, Pakistan
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia-Horng Kao
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research Center, Graduate Institute of Clinical Medicine, National Taiwan University Hospital Bei-Hu BranchNational Taiwan University HospitalNational Taiwan University College of Medicine, Taipei, Taiwan
| | - Kiyoshi Hasegawa
- Department of Surgery, Graduate School of Medicine, Hepato-Biliary-Pancreatic Surgery Division, The University of Tokyo, Tokyo, Japan
| | - Patrick Lau
- Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong SAR, China
| | - Jeong Min Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing, China
| | - Zhenwen Liu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation, Army General Hospital, Beijing, China
| | - Yinying Lu
- Department of Comprehensive Liver Cancer Center, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hongming Pan
- Department of Medical Oncology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Diana A Payawal
- Department of Medicine, Fatima University Medical Center, Manila, Philippines
| | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Gamal Shiha
- European Liver Patients' Association (ELPA), Brussels, Belgium
- World Hepatitis Alliance, London, UK
- African Liver Patient Association (ALPA), Cairo, Egypt
- The Association of Liver Patients Care (ALPC), Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Tianqiang Song
- Department of Hepatobiliary, HCC Research Center for Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Kita, Miki, Kagawa, 761-0793, Japan
| | - Ekaphop Sirachainan
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jin Mo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jose D Sallano
- Section of Gastroenterology, University of Santo Tomas, Manila, Philippines
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Institute of Prevention and Treatment of Cancer of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - AKadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheung-Tat Fan
- Liver Surgery and Transplant Centre, Hong Kong Sanatorium and Hospital, Hong Kong, Japan
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Center Hospital, Kofu-City, Yamanashi, Japan
| |
Collapse
|
5
|
Yu B, Ma W. Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev 2024; 79:29-38. [PMID: 39191624 DOI: 10.1016/j.cytogfr.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading contributor to cancer-related deaths worldwide and presents significant challenges in diagnosis and treatment due to its heterogeneous nature. The discovery of biomarkers has become crucial in addressing these challenges, promising early detection, precise diagnosis, and personalized treatment plans. Key biomarkers, such as alpha fetoprotein (AFP) glypican 3 (GPC3) and des gamma carboxy prothrombin (DCP) have shown potential in improving clinical results. Progress in proteomic technologies, including next-generation sequencing (NGS), mass spectrometry, and liquid biopsies detecting circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), has deepened our understanding of HCC's molecular landscape. Immunological markers, like PD-L1 expression and tumor-infiltrating lymphocytes (TILs), also play a crucial role in guiding immunotherapy decisions. Despite these advancements, challenges remain in biomarker validation, standardization, integration into clinical practice, and cost-related barriers. Emerging technologies like single-cell sequencing and machine learning offer promising avenues for further exploration. Continued investment in research and collaboration among researchers, healthcare providers, and policymakers is vital to harness the potential of biomarkers fully, ultimately revolutionizing HCC management and improving patient outcomes through personalized treatment approaches.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA 92102, USA.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Said W, Khattab AA, Aly Hamed S, Abo-Elmaaty SA, Khalil H. Identification of Bioactive and Anticancer Properties of Bidens Pilosa in-vitro Evidence. Asian Pac J Cancer Prev 2024; 25:3551-3558. [PMID: 39471021 PMCID: PMC11711352 DOI: 10.31557/apjcp.2024.25.10.3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVES Bidens pilosa and Trianthema portulacastrum are noteworthy weeds with a series of bioactive flavonoid constituents, hence, they can be utilized as potential health supplements and readily available sources of natural antioxidants, as well as effective constituents in medicinal applications. The current study aims to assess the anti-proliferative activity of B. pilosa and T. portulacastrum extracts using the HepG2 cell line. Methods The prepared extracts were evaluated for their cytotoxic influence and their potential CC50 in HepG2 cell lines and normal hepatocytes using the MTT assay. Using quantitative real-time polymerase chain reaction (qRT-PCR), the relative gene expression of Raf-1, MEK-1, LC3B, and Atg12 was quantified in treated cells to detect the expression levels of cell proliferation factors and autophagy-related genes. The quantification analysis of the released interleukin-1beta (IL-1β) and interleukin-1alpha (IL-1α) was also done using an ELISA assay. RESULTS The activities of B. pilosa extract showed an anti-proliferative influence on HepG2 cell lines upon treatment as compared to normal cells. It was assessed for cytotoxicity using molecular studies against both Raf-1 and MEK-1 as proposed anticancer mechanisms and showed promising inhibitory activity against Raf-1 and MEK-1 gene expression. Likewise, the reduction of autophagy-related genes, Atg12 and LC3B, in HepG2 cells pre-treated with B. pilosa extract, further confirmed its influence in the induction of programmed cell death (PCD). The ELISA assay revealed a substantial elevation of the pro-inflammatory cytokines IL-1α and IL-1β upon treatment. CONCLUSION This study found that B. pilosa extract, without any detectable cytotoxic effects, had potential inhibitory activities against both Raf-1 and MEK-1 gene expression, and a significant reduction in autophagic machinery upon treatment. .
Collapse
Affiliation(s)
- Walid Said
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | - Abeer Ahmed Khattab
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | - Saadia Aly Hamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | | | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| |
Collapse
|
7
|
Kocjan J, Rydel M, Adamek M. Hepatocellular Carcinoma (HCC) Metastasis to the Diaphragm Muscle: A Systematic Review and Meta-Analysis of Case Reports. Cancers (Basel) 2024; 16:3076. [PMID: 39272934 PMCID: PMC11394088 DOI: 10.3390/cancers16173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The purpose of this study was to conduct a systematic review and meta-analysis of case reports presenting HCC spread to the diaphragm muscle and to determine possible risk factors for this condition. An extensive literature search was performed using the following electronic databases: MEDLINE, CINAHL, ScienceDirect, Google Scholar, and DOAJ. A total of 18 articles describing 27 hepatocellular carcinoma patients were included in this review. The presence of HCC cells in the superior liver segment is strongly associated with metastases to the diaphragm. Among the two types of diaphragm involvement by HCC cells, diaphragm infiltration occurs much more frequently than diaphragm adhesion. However, an HCC nodule in the 8th liver segment and a higher number of liver segments involved by HCC cells predispose patients to diaphragm adhesion. Hepatitis B is a risk factor for diaphragm metastases in recurrent HCC. The tumor diameter is not associated with HCC spread to the diaphragm muscle. We did not find specific symptoms reported by patients that could indicate HCC metastasis to the diaphragm muscle. The presence of hepatitis B and the localization of HCC cells in superior liver segments, especially in the 8th liver segment, should be take into consideration in the diagnostic process.
Collapse
Affiliation(s)
- Janusz Kocjan
- Diaphragm Concept Academy, Private Clinic Centre Specializing in Treating of Diaphragm Disorders, 32-300 Olkusz, Poland
| | - Mateusz Rydel
- Department of Thoracic Surgery, Faculty of Medicine with Dentistry Division, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine with Dentistry Division, Medical University of Silesia, 40-055 Katowice, Poland
- Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
8
|
Bi X, Zhao H, Zhao H, Li G, Wang X, Chen B, Zhang W, Che X, Huang Z, Han Y, Jiang L, Sun Y, Yang Z, Zhou J, Zhang Y, Zhu Z, Chen M, Cheng S, Cai J. Consensus of Chinese Experts on Neoadjuvant and Conversion Therapies for Hepatocellular Carcinoma: 2023 Update. Liver Cancer 2024:1-16. [DOI: 10.1159/000541249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy in China, with high recurrence rate and low resection rate among patients first diagnosed. Preoperative treatments including neoadjuvant and conversion therapy have the potential to overcome these challenges. In December 2021, Chinese expert consensus on neoadjuvant and conversion therapies for hepatocellular carcinoma was published. With the emersion of new evidence regarding the neoadjuvant and conversion therapies for HCC, the cooperative group brought together multidisciplinary researchers and scholars with experience in related fields to update the new edition (2023 Edition) for reference in China, including principle of the treatment strategies, the potential populations selection, treatment methods, multidisciplinary team, and future research for preoperative treatments. The new consensus aims to provide guidance for clinical application. Through the use of neoadjuvant therapy and conversion therapy, we can enhance the resection rate and reduce the recurrence of intermediate-to-advanced HCC patients, thereby improving survival outcomes.
Collapse
|
9
|
Seo DH, Park JW, Jung HW, Kang MW, Kang BY, Lee DY, Lee JJ, Yoon SK, Jang JW, Ahn JG, Sung PS. Machine learning model reveals roles of interferon‑stimulated genes in sorafenib‑resistant liver cancer. Oncol Lett 2024; 28:438. [PMID: 39081963 PMCID: PMC11287107 DOI: 10.3892/ol.2024.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024] Open
Abstract
HCC (Hepatocellular carcinoma) is the most common malignant tumor; however, the molecular pathogenesis of these tumors is not well understood. Sorafenib, an approved treatment for HCC, inhibits angiogenesis and tumor cell proliferation. However, only ~30% of patients are sensitive to sorafenib and most show disease progression, indicating resistance to sorafenib. The present study used machine learning to investigate several mechanisms related to sorafenib resistance in liver cancer cells. This revealed that unphosphorylated interferon-stimulated genes (U-ISGs) were upregulated in sorafenib-resistant liver cancer cells, and the unphosphorylated ISGF3 (U-ISGF3; unphosphorylated STAT1, unphosphorylated STAT2 and IRF9) complex was increased in sorafenib-resistant liver cancer cells. Further study revealed that the knockdown of the U-ISGF3 complex downregulated U-ISGs. In addition, inhibition of the U-ISGF3 complex downregulated cell viability in sorafenib-resistant liver cancer cells. These results suggest that U-ISGF3 induced sorafenib resistance in liver cancer cells. Also, this mechanism may also be relevant to patients with sorafenib resistance.
Collapse
Affiliation(s)
- Deok Hwa Seo
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Woo Park
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hee Won Jung
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Min Woo Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Yoon Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Yeup Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Jun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Gyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Pil Soo Sung
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Meyer D, Kosacka J, von Bergen M, Christ B, Marz M. Data report on gene expression after hepatic portal vein ligation (PVL) in rats. Front Genet 2024; 15:1421955. [PMID: 39233735 PMCID: PMC11371715 DOI: 10.3389/fgene.2024.1421955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Affiliation(s)
- Daria Meyer
- Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- Oncgnostics GmbH, Jena, Germany
| | - Joanna Kosacka
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin von Bergen
- Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Manja Marz
- Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
- European Virus Bioinformatics Center, Jena, Germany
- Michael Stifel Center Jena, Jena, Germany
- Aging Research Center (ARC), Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
11
|
Kimura T. Advancements in the Treatment Landscape of Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1054. [PMID: 38473409 DOI: 10.3390/cancers16051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The landscape of hepatocellular carcinoma (HCC) treatment has expanded significantly with the advent of multi-kinase inhibitors and immune checkpoint inhibitors [...].
Collapse
Affiliation(s)
- Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto 390-8621, Japan
| |
Collapse
|
12
|
Zhou XQ, Li YP, Dang SS. Precision targeting in hepatocellular carcinoma: Exploring ligand-receptor mediated nanotherapy. World J Hepatol 2024; 16:164-176. [PMID: 38495282 PMCID: PMC10941735 DOI: 10.4254/wjh.v16.i2.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality. Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages, but it is often ineffective and suffers from problems such as multidrug resistance, rapid drug clearance, nonspecific targeting, high side effects, and low drug accumulation in tumor cells. In response to these limitations, recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC. This review focuses on recent advances in nanoparticle-based targeted drug delivery systems, with special attention to various receptors overexpressed on HCC cells. These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC. We comprehensively summarize the current understanding of these receptors, their role in nanoparticle targeting, and the impact of such targeted therapies on HCC. By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies, more effective and precise treatment of HCC can be achieved.
Collapse
Affiliation(s)
- Xia-Qing Zhou
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|